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Abstract

A diverse number of tasks in computer vision and machine learning enjoy from representations

of data that are compact yet discriminative, informative and robust to critical measurements.

Two notable representations are offered by Region Covariance Descriptors (RCovD) and linear

subspaces which are naturally analyzed through the manifold of Symmetric Positive Definite

(SPD) matrices and the Grassmann manifold, respectively, two widely used types of Rieman-

nian manifolds in computer vision.

As our first objective, we examine image and video-based recognition applications where

the local descriptors have the aforementioned Riemannian structures, namely the SPD or linear

subspace structure. Initially, we provide a solution to compute Riemannian version of the

conventional Vector of Locally aggregated Descriptors (VLAD), using geodesic distance of

the underlying manifold as the nearness measure. Next, by having a closer look at the resulting

codes, we formulate a new concept which we name Local Difference Vectors (LDV). LDVs

enable us to elegantly expand our Riemannian coding techniques to any arbitrary metric as

well as provide intrinsic solutions to Riemannian sparse coding and its variants when local

structured descriptors are considered.

We then turn our attention to two special types of covariance descriptors namely infinite-

dimensional RCovDs and rank-deficient covariance matrices for which the underlying Rieman-

nian structure, i.e. the manifold of SPD matrices is out of reach to great extent. To overcome

this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use

of two feature mappings, namely random Fourier features and the Nyström method. As for

the rank-deficient covariance matrices, unlike most existing approaches that employ inference

tools by predefined regularizers, we derive positive definite kernels that can be decomposed

into the kernels on the cone of SPD matrices and kernels on the Grassmann manifolds and

show their effectiveness for image set classification task.

Furthermore, inspired by attractive properties of Riemannian optimization techniques, we

extend the recently introduced Keep It Simple and Straightforward MEtric learning (KISSME)

method to the scenarios where input data is non-linearly distributed. To this end, we make

use of the infinite dimensional covariance matrices and propose techniques towards projecting

on the positive cone in a Reproducing Kernel Hilbert Space (RKHS). We also address the
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sensitivity issue of the KISSME to the input dimensionality. The KISSME algorithm is greatly

dependent on Principal Component Analysis (PCA) as a preprocessing step which can lead

to difficulties, especially when the dimensionality is not meticulously set. To address this

issue, based on the KISSME algorithm, we develop a Riemannian framework to jointly learn

a mapping performing dimensionality reduction and a metric in the induced space. Lastly, in

line with the recent trend in metric learning, we devise end-to-end learning of a generic deep

network for metric learning using our derivation.
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Chapter 1

Introduction

Making use of structured descriptors has been shown to be effective in a wide range of com-

puter vision tasks. A notable example is the Diffusion Tensor Imaging (DTI) technique which

represents each voxel in 3-D brain scans by a 3× 3 Symmetric Positive Definite (SPD) matrix.

It is now an accepted fact that analyzing the resulting diffusion tensors by vectorizing them

deteriorates the performances heavily and can lead to solutions that are physically meaning-

less Alexander et al. [2007]. Another example of a structured descriptor is the Region Covari-

ance Descriptor (RCovD) Tuzel et al. [2008], successfully used in human detection Tuzel et al.

[2008], texture classification Faraki et al. [2015b] , human head pose estimation Tosato et al.

[2013] and face recognition Wang et al. [2012]; Harandi et al. [2016]. RCovDs offer compact

and rich visual content representations by fusing various features while reducing the impact of

noisy samples Tuzel et al. [2008]; Faraki et al. [2015b]. Similarly, linear subspaces as struc-

tured descriptors offer a convenient platform to compensate for a wide range of image varia-

tions and have been used with promising results in image set and video classification Faraki

et al. [2016]; Harandi et al. [2015a].

Despite their intriguing properties, analyzing the aforementioned structured descriptors is

not straightforward as a result of their non-Euclidean geometry. More specifically, diffusion

tensors and RCovDs belong to the manifold of SPD matrices Pennec et al. [2006] and linear

subspaces are points on the Grassmann manifold Edelman et al. [1998]. Although the two

manifolds are Riemannian (i.e., equipped with metrics), the lack of a vector space structure is

a barrier for developing inference methods Arsigny et al. [2007]; Pennec et al. [2006]; Tuzel

et al. [2008]. The difficulty will increase when special types of the descriptors such as infinite-

dimensional RCovDs Harandi et al. [2014a] or rank-deficient covariance descriptors Wang

et al. [2012] are considered. This has been demonstrated by many previous works Arsigny

et al. [2007]; Pennec et al. [2006]; Tuzel et al. [2008].

On a related note, at the heart of many Mahalanobis metric learning algorithms lie notions

1



2 Introduction

of Riemannian geometry and optimization on a curved Riemannian manifold to find a metric

M and/or a projection W in the presence of constraints Weinberger and Saul [2009]; Mignon

and Jurie [2012]; Harandi et al. [2017]. In better words, an exact formulation of the objective

functions of such algorithms is obtained through viewing M and W as a point on a Riemannian

manifold. For example, an ideal metric matrix is an instance of a point on the manifold of SPD

matrices and hence a proper optimization technique on this manifold promises a valid solu-

tion. As another example, the Stiefel manifold provides a natural way to handle orthogonality

constraints on W which is of great interest in many metric learning methods.

It is worth mentioning that we endeavor to present universal techniques which with subtle

modifications, are applicable to wide range of applications. Therefore, throughout the thesis

we will utilize various types of datasets and applications to evaluate our proposals.

1.1 Contributions

1.1.1 Riemannian Coding

In our first contribution, we extend well-known aggregation/coding techniques (such as sparse

coding Wright et al. [2009]) in curved and non-Euclidean spaces, i.e., Riemannian manifolds.

Unlike many existing non-vectorial coding approaches, we do not base our algorithms on the

restrictive assumption that a holistic representation of images or videos is at hand. In particular,

we consider structured local descriptors from visual data, namely RCovDs and linear subspaces

that lie on the manifold of SPD matrices and the Grassmannian manifolds, respectively. We

provide a comprehensive mathematical framework that facilitates the aggregation problem of

such manifold data into an elegant solution.

To this end, we start by the simplest form of coding, namely bag of words. Then, inspired

by the success of Vector of Locally Aggregated Descriptors (VLAD) Jégou et al. [2012] in

addressing computer vision problems, we will introduce its Riemannian extensions. Finally,

we study Riemannian form of sparse coding, locality-constrained linear coding Wang et al.

[2010] and collaborative coding Zhang et al. [2011].

1.1.2 Infinite-dimensional RCovDs

It has been shown in some studies that infinite-dimensional RCovDs offer better discriminatory

power over their low-dimensional versions Harandi et al. [2014a]; Quang et al. [2014]. How-

ever, the underlying Riemannian structure, i.e., the manifold of SPD matrices, is out of reach
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to great extent for the infinite-dimensional RCovDs and one is confined to perform implicit

analysis. To overcome this difficulty, we propose methods to approximate infinite-dimensional

RCovDs by exploiting two feature mappings, namely random Fourier features Rahimi and

Recht [2007] and the Nyström method Baker [1977]. By approximating the infinite-dimensional

RCovDs with finite-dimensional ones, one could seamlessly exploit the rich geometry of

RCovDs and tools developed upon that to do the inference. We will empirically show that

the proposed finite-dimensional approximations of infinite-dimensional RCovDs consistently

outperform the low-dimensional RCovDs for image classification task, while enjoying the Rie-

mannian structure of the SPD manifolds.

1.1.3 Symmetric Positive Semi-Definite Matrices for Image Set Classifica-

tion

Although representing visual contents by RCovDs and leveraging the inherent manifold struc-

ture lead to enhanced performances in various visual recognition tasks, the resulting RCovD is

often rank-deficient when image set classification is deemed. Thus, most existing approaches

adhere to blind perturbation with predefined regularizers just to be able to employ inference

tools Wang et al. [2012]; Faraki et al. [2014b]. To overcome this problem, we introduce novel

similarity measures specifically designed for rank-deficient RCovDs, or in other words, Sym-

metric Positive Semi-Definite (SPSD) matrices. In particular, we derive positive definite ker-

nels that can be decomposed into the kernels on the cone of SPD matrices and kernels on the

Grassmann manifolds.

1.1.4 Metric Learning

We add an extension to the recently introduced Keep It Simple and Straightforward MEtric

learning (KISSME) Koestinger et al. [2012] method by devising a kernel version of the algo-

rithm, hence making it applicable in scenarios where input data is not linearly distributed. With

the aid of infinite dimensional covariance matrices, we propose two techniques towards pro-

jecting on the positive cone in a Reproducing Kernel Hilbert Space (RKHS). The first method,

enjoys a closed-form formulation and is more suitable when computational load is important.

The second solution is more accurate and requires Riemannian optimization techniques. Our

experiments evidence that, compared to the state-of-the-art metric learning algorithms, work-

ing directly in reproducing kernel Hilbert space, leads to more robust and better performances.

Furthermore, we address the sensitivity issue of the KISSME to the input dimensionality.
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To this end, based on the KISSME algorithm, we develop a Riemannian framework to jointly

learn a mapping performing dimensionality reduction and a metric in the induced space. In

line with the recent metric learning methods, we also devise end-to-end learning of a generic

deep network for metric learning using our derivation.

1.2 Thesis Outline

The remaining parts of this thesis are organized into five chapters as follows. Chapter 2 intro-

duces preliminary concepts which are of essential interest in later chapters. The notation used

throughout the thesis is defined in the chapter as well. In Chapter 3, we extend state-of-the-

art coding/aggregation methods onto an extensive space of curved Riemannian manifolds by

providing a comprehensive mathematical framework that formulates the coding/aggregation

problem into an elegant solution. In chapter 4, we consider the two special types of covari-

ance descriptors, namely infinite-dimensional RCovDs and SPSD matrices and propose our

methods to estimate the infinite-dimensional RCovDs and analyze SPSD matrices by novel

similarity measures. We address some limitations of the KISSME method in Chapter 5, where

Riemannian optimization techniques become useful. We first propose a kernel version of the

KISSME, hence providing a solution to employ the algorithm on non-vectorized data (e.g.,

manifold-value data). We then suggest a dimensionality reduction technique along learning

the metric. We conclude the chapter by devising end-to-end learning of a generic deep net-

work for metric learning using our derivation. Finally, Chapter 6 concludes this thesis by a

summary. Fig. 1.1 illustrates the connection between the main chapters in one diagram.

1.3 Publications

The contributions described in this thesis have previously appeared in the following publica-

tions.

• A Comprehensive Look at Coding Techniques on Riemannian Manifolds, Masoud Faraki,

Mehrtash Harandi, and Fatih Porikli, IEEE Transactions on Neural Networks and Learn-

ing Systems, 2018.

• Large Scale Metric Learning, A Voyage From Shallow to Deep, Masoud Faraki, Mehrtash

Harandi, and Fatih Porikli, IEEE Transactions on Neural Networks and Learning Sys-

tems, 2017.
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in 

Computer Vision
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Figure 1.1: Depicted summary of the main contributions of this thesis.

• No Fuss Metric Learning, a Hilbert Space Scenario, Masoud Faraki, Mehrtash Harandi,

and Fatih Porikli, Pattern Recognition Letters, 98(C):83-89, 2017.

• Image Set Classification by Symmetric Positive Semi-Definite Matrices, Masoud Faraki,

Mehrtash Harandi, and Fatih Porikli, IEEE Winter Conference on Applications of Com-

puter Vision, Lake Placid, NY, March 7-9, 2016.

• More About VLAD: A Leap From Euclidean to Riemannian Manifolds, Masoud Faraki,

Mehrtash Harandi, and Fatih Porikli, IEEE Conference on Computer Vision and Pattern

Recognition, Boston, USA, June 7-12, 2015.

• Approximate Infinite-Dimensional Region Covariance Descriptors for Image Classifi-

cation, Masoud Faraki, Mehrtash Harandi, and Fatih Porikli, 40th IEEE International

Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, April 19-

24, 2015.

• Material Classification on Symmetric Positive Definite Manifolds, Masoud Faraki, Mehrtash

Harandi, and Fatih Porikli, IEEE Winter Conference on Applications of Computer Vi-

sion, Waikoloa Beach, HI, Jan 6-9, 2015.

• Fisher Tensors for Classifying Human Epithelial Cells, Masoud Faraki, Mehrtash Ha-

randi, Arnold Wiliem, and Brian Lovell, Pattern Recognition, 47(7):2348-2359, 2014.
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• Log-Euclidean Bag of Words for Human Action Recognition, Masoud Faraki, Maziar

Palhang, and Conrad Sanderson, IET Computer Vision, 9(3):331-339, 2014.

• Bag of Riemannian Words for Virus Classification, Masoud Faraki and Mehrtash Ha-

randi, CRC press Taylor and Francis group, 2014.



Chapter 2

Background

In this part, we introduce some preliminary concepts such as Riemannian geometry which are

of essential in our developments. Throughout the thesis, we use bold lower-case letters (e.g.,

x) to show column vectors and bold upper-case letters (e.g., X) to show matrices. [·]i is used to

denote the i-th element of a vector. 1n and In show vector of ones in Rn and the n× n identity

matrix, respectively. `1 and `2 norms of a vector are denoted by ‖x‖1 = ∑i |[x]i| and ‖x‖ =
√

xTx, respectively. The Frobenius norm of a matrix is shown by ‖X‖F =
√

Tr(XTX), with

Tr(·) indicating the matrix trace. The determinant of a matrix is shown by det(X). log(X)

is the principal logarithm of matrix X. det(·) shows the matrix determinant. Finally, [·]+
indicates the hinge loss function, i.e., max(0, ·).

Let X be a nonempty set. Then,

Definition 1. A pair (X , g) identifies a metric space when g : X × X → R+ is a global

distance function such that ∀x, y, z ∈ X the following properties hold

• g(x, y) ≥ 0, i.e., non-negativity

• g(x, y) = g(y, x), i.e., symmetry

• g(x, y) ≤ g(x, z) + g(z, y), i.e., triangle inequality

• g(x, y) = 0 iff x = y, i.e., distinguishability

Definition 2 (Real-valued Positive Definite Kernels). A symmetric function k : X ×X → R

is a positive definite (pd) kernel on X if and only if ∑n
i,j=1 cicjk(xi, xj) > 0 for any n ∈ N,

xi ∈ X and non-zero vector c = (c1, c2, · · · , cn)T ∈ Rn.

According to Mercer’s theorem, for any pd kernel k(·, ·), there exists a mapping to a Re-

producing Kernel Hilbert Space (RKHS), φ : X → H, such that: ∀xi, xj ∈ X , k(xi, xj) =〈
φ(xi), φ(xj)

〉
H.

7
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2.0.1 Riemannian Geometry

A manifold M is a Hausdorff topological space which locally resembles a Euclidean space

Rm. The focus of this work is analytic manifolds (see Subbarao and Meer [2009] for defini-

tion). Let f and g be two arbitrary continuous functions acting on a manifoldM and c1 and

c2 be two scalars. Then a tangent ∆ at a point on the manifold is a real-valued operator on

continuous functions satisfying following properties

∆(c1 f + c2 g) = c1 ∆( f ) + c2 ∆(g),

∆( f g) = f ∆(g) + g ∆( f )

Intuitively, ∆ represents a direction (vector) in which the value assigned to ∆( f ) can be

thought as the derivative of f in that direction.

The tangent space attached to a point P ∈ M, TPM, is a vector space that consists of the

tangent vectors of all possible curves on the manifold passing through P Pennec et al. [2006].

A Riemannian manifold is a differential manifold with a metric defined on the tangent spaces.

The structure of a Riemannian manifold is specified by the metric. A Riemannian metric is

a continuous collection of dot products on the tangent space at each point of the manifold. It

is usually chosen to provide robustness to some geometrical transformations. Furthermore, it

enables one to define lengths and angles on the manifold.

Smooth curves connect points on a Riemannian manifold. Having the Riemannian metric

at the disposal, one can compute instantaneous speed (direction and magnitude) and length of

a given curve. The curves yielding the minimum distance for any two points of the manifold

are called geodesics and their length is the geodesic distance.

On a Riemannian manifold M, let −→pq ∈ TPM be a tangent vector. For geodesically

complete manifolds (the case in our work), there exists a unique geodesic starting at P asso-

ciated with this tangent vector and hence −→pq can identify a point Q ∈ M. The exponential

map expP(·) : TPM → M, guarantees that the length of the tangent vector is equal to the

geodesic distance. The logarithm map logP(·) = exp−1
P (·) : M → TPM, is the inverse

of the exponential map and maps a point on the manifold to the tangent space TPM, i.e.,
−→pq = logP(Q). We note that, the exponential and logarithm maps vary as the point P moves

along the manifold.
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2.0.2 The Manifold of Symmetric Positive Definite Matrices

A real d× d matrix C is Symmetric Positive Definite (SPD) if and only if zTCz > 0 for every

non-zero vector z ∈ Rd. The space of real d× d SPD matrices, Sd
++, forms a Lie group which

has a manifold structure. This allows one to use the language of Riemannian manifolds, e.g.,

geodesics and all the relevant concepts of differential geometry when discussing Sd
++. The

tangent space at a point X ∈ Sd
++ is the set of all d× d symmetric matrices. Formally,

TXSd
++ , {∆ ∈ Rd×d : ∆ = ∆T} . (2.1)

Region Covariance Descriptors (RCovD) are SPD matrices and therefore it is essential to

utilize Riemannian geometry to analyze them. Formally, a d× d RCovD can be constructed

from a set of r observations O = {oi}r
i=1, oi ∈ Rd, extracted from a region in an image (or a

block in a video) as follows

C I =
1

r− 1

r

∑
i=1

(oi − o) (oi − o)T , (2.2)

where o = 1
r ∑r

i=1 oi.

Sd
++ is mostly studied with the Riemannian structure induced by the Affine Invariant Rie-

mannian Metric (AIRM) Pennec et al. [2006].

Definition 3. The geodesic distance δG : Sd
++ × Sd

++ → R+ induced by the AIRM is defined

as

δG(X, Y) , ‖ log(X−1/2YX−1/2)‖F . (2.3)

Beside the AIRM, two types of symmetric Bregman divergences, namely the Stein Sra

[2012] and the Jeffrey Wang and Vemuri [2004] divergences are widely used to measure simi-

larities on SPD manifolds.

Definition 4. The Stein metric δS : Sd
++ × Sd

++ → R+ is a symmetric type of Bregman

divergence and is defined as

δ2
S(X, Y) , ln det

(
X + Y

2

)
− 1

2
ln det(XY) . (2.4)

Definition 5. The Jeffrey divergence (also known as J or symmetric KL divergence) δJ : Sd
++×
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Sd
++ → R+ is also a symmetric type of Bregman divergence and is defined as

δ2
J (X, Y) ,

1
2

Tr(X−1Y) +
1
2

Tr(Y−1X)− d . (2.5)

2.0.3 The Grassmann Manifold

To have a better understanding of the Grassmann manifold, we first define Stiefel manifold.

The set of d× p , 0 < p < d, matrices with orthonormal columns is a Riemannian manifold

known as Stiefel manifold S(p, d). More formally,

S(p, d) , {X ∈ Rd×p : XTX = Ip} . (2.6)

A point on the Grassmann manifold G p
d is a subspace spanned by the columns of a d× p

full rank matrix Edelman et al. [1998]. In other words, points on G p
d are equivalence classes of

d× p matrices with orthonormal columns where two matrices are equivalent if their columns

span the same p-dimensional subspace. The tangent space at a point X ∈ G p
d admits

TXG p
d , {∆ ∈ Rd×p : XT∆ + ∆TX = 0} . (2.7)

The geodesic distance between two subspaces (points) is defined as the magnitude of the

smallest rotation that takes one point to the other.

Definition 6. For the Grassmannian, the geodesic distance between two points X and Y is

given by

δG(X, Y) , ‖Θ‖ , (2.8)

where Θ = [θ1, θ2, · · · , θp] is the vector of principal angles between X and Y Edelman et al.

[1998].

In addition to the geodesic distance, a popular metric on G p
d is the projection metric.

Definition 7. The projection distance, δP : G p
d × G

p
d → R+, between X and Y is defined

as Hamm and Lee [2008]

δ2
P(X, Y) , ‖XXT − YYT‖2

F . (2.9)



Chapter 3

Riemannian Coding

3.1 Overview

An underlying assumption in traditional coding schemes (e.g., sparse coding) is that the data

geometrically comply with the Euclidean space. In other words, the data is presented to the

algorithm in vector form and Euclidean axioms are fulfilled. This is of course restrictive in

machine learning, computer vision and signal processing as shown by a large number of recent

studies. Our proposal takes a further step and provides a comprehensive mathematical frame-

work to perform coding in curved and non-Euclidean spaces, i.e., Riemannian manifolds.

To this end, we start by the simplest form of coding, namely bag of words. Then, inspired

by the success of Vector of Locally Aggregated Descriptors (VLAD) Jégou et al. [2012] in

addressing computer vision problems, we will introduce its Riemannian extensions. Finally,

we study Riemannian form of Sparse Coding (SC) Wright et al. [2009], locality-constrained

linear coding (LLC) Wang et al. [2010] and Collaborative Coding (CC) Zhang et al. [2011].

Through rigorous tests, we demonstrate the superior performance of our Riemannian coding

schemes against state-of-the-art methods on several visual classification tasks including head

pose classification, video-based face recognition and dynamic scene recognition Faraki et al.

[2018].

3.2 Introduction

In this chapter, we devise a frame-work to exploit state-of-the-art coding methods such as

VLAD and SC where the local descriptors belong to a Riemannian manifold. Classical cod-

ing/aggregating techniques Jégou et al. [2012]; Sivic and Zisserman [2003]; Lazebnik et al.

[2006] are designed to work only with vectors (i.e., local descriptors are points in Rn). Lately,

a few studies target the problem of coding/aggregation when the local descriptors are structured

(e.g., subspaces) and non-vectorial Harandi et al. [2015a]. Inspired by the fact that describing

11
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images or videos by local descriptors is the method of choice Lazebnik et al. [2006]; Jégou

et al. [2012]; Perronnin and Dance [2007] these days, we add a novel dimension to the appli-

cability of such techniques by introducing a mathematical foundation for coding/aggregation

of structured descriptors.

To put the discussion into perspective, describing images or videos by local descriptors is

preferable to holistic representations when, for instance, the recognition problem pertains large

intra-class variations, articulated shapes, self-occlusions, and changing backgrounds, to name

a few. On a related note, structured representations such as Region Covariance Descriptors

(RCovD) and linear subspaces have been shown to provide robust and efficient representations

for a wide range of tasks Tuzel et al. [2008]; Faraki et al. [2014a]; Harandi et al. [2015a].

However, RCovDs and linear subspaces lie on connected Riemannian manifolds, the manifold

of Symmetric Positive Definite (SPD) matrices and the Grassmann manifolds, respectively.

Consequently, Euclidean geometry is not appropriate to analyze them as shown in several

recent studies Tuzel et al. [2008]; Pennec et al. [2006]; Jayasumana et al. [2013]; Harandi et al.

[2015a].

Here, we examine image and video-based recognition applications where the local de-

scriptors have the aforementioned Riemannian structures, namely the SPD or linear subspace

structure. To be precise, we provide answers to the two following questions

• can we encode the local structured descriptors into a fixed length and discriminative

vector?

• can we derive a universal mathematical framework that helps us formulate the encoding

problem into an elegant solution?

To this end, we begin by providing a solution to compute Riemannian version of the con-

ventional VLAD, R-VLAD, using the geodesic distance of the underlying manifold as the

nearness measure. Then, we clarify that the resulting codes are actually obtained from a

new concept which we name Local Difference Vectors (LDV). Furthermore, analogues to the

Higher-Order (HO-) VLAD Peng et al. [2014], we also leverage higher order statistics of local

structured descriptors for R-VLAD codes and make them more discriminative. Lastly, with the

aid of the LDVs, we expand our Riemannian coding techniques and provide intrinsic solutions

to Riemannian SC (R-SC) and two of its variants, namely Riemannian version of the LLC

(R-LLC) and the CC (R-CC).

With LDVs, we show that coding/aggregation with other metrics/closeness measures rather

than geodesic distances is also possible. In other words, we do not confine ourselves to the
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geodesic distance case and develop the sister family of our methods by exploiting various

well-known forms of similarity measures (e.g., divergences) defined on the underlying mani-

folds. Our motivation is the fact that one can seamlessly use our general formulation with a

metric suitable for a specific task at hand. For example, one may choose a divergence over

the geodesic distance if computing geodesics is demanding. In particular, we make use of the

Stein Sra [2012] and Jeffrey Wang and Vemuri [2004] divergences on the manifold of SPD

matrices and the projection distance Hamm and Lee [2008] on Grassmann manifolds to obtain

new variants of our solution. Last but not least, our contributions enable one to aggregate local

descriptors on curved spaces. Therefore, we show that conventional forms of coding/aggre-

gation are indeed special cases of our universal scheme if the manifold is chosen to be the

Euclidean space.

Our experiments demonstrate the superiority of the proposed approach against several

state-of-the-art methods such as the Weighted ARray of COvariances (WARCO) of Tosato

et al. Tosato et al. [2013] for head pose classification and the Deep Reconstruction Model

(DRM) of Hayat et al. Hayat et al. [2015] for video-based face classification. To the best of

our knowledge, using the standard protocol, our proposed methods achieve top results on stan-

dard benchmarks: 85.3% for HOCoffe Tosato et al. [2013], 92.9% for QMUL Tosato et al.

[2013], 97.8% for Dyntex++ Ghanem and Ahuja [2010], 93.1% for Maryland Shroff et al.

[2010] and 79.9% for YouTube Celebrities Kim et al. [2008].

3.3 Related Work

In this section, we review some relevant encoding methods to our proposals, such as Bag of

Words (BoW), VLAD and SC. The reason behind the great surge of interest in these local

models is twofold. Firstly, they can benefit from powerful local feature descriptors such as

SIFT Lowe [2004] which (to some extent) provide robustness to image transformations such

as scaling, translation and occlusion. Secondly, the output vector can be compared using the

conventional Euclidean distance norms and utilized in powerful classifiers (e.g. Support Vector

Machines (SVM)).

3.3.1 Bag of Words

While celebrating their third decade of birth, BoW Sivic and Zisserman [2003]and its ex-

tensions Lazebnik et al. [2006] continue to be the baseline image and video representations.

Several variations have been proposed to improve the discriminatory power of the original
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BoW model. Notable examples include Video Google Sivic and Zisserman [2003] in which

the resulting vector components are weighted by inverse document frequency terms and spatio-

temporal pyramid matching Lazebnik et al. [2006] which considers the information about the

spatial layout of features in the final image representation. Another important variant is the

work of Gemert et al. Van Gemert et al. [2010] which addresses the unsteady hard assignments

in histogram generation process of the original BoW and generates a descriptor using multiple

visual words in a soft assignment manner.

In a very compatible scenario, Super Vector Coding (SVC) Zhou et al. [2010] method gen-

erates a (non-linear) code by linearly approximating a sufficiently smooth function defined on

a high dimensional space. The resulting code can be understood as a super vector aggregat-

ing zero and first order statistics of local descriptors. SVC may achieve a lower functional

approximation error compared to the original BoW method.

Recently, a Riemannian version of BoW is proposed on the space of SPD matrices using

the geodesic distance along with a simpler yet effective version, referred to as Log-Euclidean

method Faraki and Harandi [2014]; Faraki et al. [2014a]. Moreover, a simpler yet effective ver-

sion, referred to as Log-Euclidean BoW, is devised for action recognition Faraki et al. [2014b].

We will utilize these two methods as baselines in our experiments.

3.3.2 Vector of Locally Aggregated Descriptors

The VLAD descriptor, one of the main elements in this work, can be understood as a simpler

version of the earlier Fisher Vectors (FV) derived from Fisher kernel Perronnin and Dance

[2007]; Jaakkola and Haussler [1999]. Assuming that an incoming variable-sized set of de-

scriptors follows a parametric generative model, FV is able to provide fixed-length codes by

taking the gradients of the samples’ likelihood with respect to the parameters of the distribu-

tion, weighted by the inverse square root of the Fisher information matrix. It has been shown

that VLAD inherits the useful properties of FV by providing compact codes with relaxed as-

sumptions on the origin of the samples and the scale of the output vector components (to be

uniform) Jégou et al. [2012]. It is also worth noting that VLAD subtly departs from conven-

tional BoW as it encodes the differences from the cluster centers rather than simply counting

the number of assignments to them.

Peng et al. [2014] address the problem of enriching VLAD codes by higher-order statistics

(called HVLAD) and supervised codebook learning (called SVLAD). The complimentary in-

formation in their HVLAD descriptor are second and third-order statistics which are obtained

from covariance matrix and skewness measure of the points in each cluster. VLAD accuracy
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scores are further boosted by discriminatively learning the codebook in SVLAD.

Very recently, effective use of the aggregation with deep features has been proved to be ben-

eficial on various benchmarks. Gong et al. [2014] propose to first extract deep Convolutional

Neural Network (CNN) activations for local patches at multiple scales and then exploit VLAD

coding vectors to pool the activations. As another example, Cimpoi et al. [2015] propose a

descriptor obtained by pooling CNN features which substantially improves the state-of-the-

art in texture/material classification and scene recognition tasks. Some other recent advances

include kernel VLAD Harandi et al. [2015c], better normalization schemes for VLAD Arand-

jelovic and Zisserman [2013] and VLAD for action recognition Jain et al. [2013].

3.3.3 Sparse Coding

Encoding a vector as linear combination of a few elements of an over-complete codebook is

recognized as SC and has led to notable performances in various computer vision tasks Wright

et al. [2009]; Elad and Aharon [2006]. Another alternative to extend SC on non-linear spaces

is through recasting the problem into Reproducing Kernel Hilbert Spaces (RKHS) via the ker-

nel trick Harandi et al. [2016, 2015a]. This results in a convex quadratic problem which can

be solved conveniently. Another advantage of this method is that one could benefit from SC

while having more separable samples in the resulting higher dimensional RKHS. Nevertheless,

one is always obliged to find a valid kernel to be able to work on the manifold. For instance,

in Harandi et al. [2016] authors are limited to use Bregman divergence based Gaussian ker-

nels on SPD manifolds since the popular widely used Affine Invariant Riemannian Metric

(AIRM) Pennec et al. [2006] does not yield a valid positive definite Gaussian kernel.

In Xie et al. [2013], Xie et al. formulate the problem of sparse coding and dictionary learn-

ing on SPD manifolds using the Riemannian geodesic distances. To this end, they propose

a coordinate-independent approach to reconstruct a given sample using affine linear combi-

nation of a small number of dictionary atoms. The optimization problem over sparse codes

and dictionary atoms is solved by alternating between them. Further, the lack of global vector

space structure is partially compensated by the local tangent space at each query point. We

will elaborate on this method more in § 3.5.3.

3.4 Conventional Coding Methods

In this part, we review some standard coding methods related to our contributions. Let us as-

sume that a set of local descriptors X = {xt}m
t=1, xt ∈ Rd (e.g., the dense SIFT features Lowe
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[2004]) extracted from an image or video and a codebook D with atoms {di}k
i=1, di ∈ Rd

(e.g., obtained by the standard k-means algorithm) are at our disposal. Coding algorithms

represent each query point x as some function of codebook atoms di. Furthermore, some addi-

tional constraints might be added to objective functions to impose useful structure on the codes

and subsequently obtain a more discriminative representation.

3.4.1 Vector of Locally Aggregated Descriptors

To review the VLAD method, we begin by studying its function in Euclidean spaces through its

predecessor, i.e., the FV. FV encodes the set X into a high-dimensional vector representation

by fitting a parametric generative model in the form of a Gaussian Mixture Model (GMM) with

k components to the local descriptors, i.e.,

p(xt|λ) =
k

∑
i=1

ωiN (xt| µi, Σi) ,

where λ = {ωi, µi, Σi} are the mixture weight, mean and covariance of the Gaussian compo-

nents, respectively.

The FV descriptor is obtained by computing the gradients of the log-likelihood of the

model with respect to its parameters (also known as the score functions in statistics). It leads

to a representation that captures the contribution of the individual parameters to the generative

process. Related to VLAD, is the first order differences between members of the set X and

each of the GMM centers which has the following form

∇µi log p(X |λ) =
m

∑
t=1

γi(xt)Σ−1
i (µi − xt) , (3.1)

where γi(xt) is the soft-assignment of xt to the i-th Gaussian component, i.e.,

γi(xt) =
ωiN (xt| µi, Σi)

∑k
j=1 ωjN (xt| µj, Σj)

.

In VLAD, the input space Rd is first partitioned into k clusters by learning a codebook D
with atoms {di}k

i=1. Then, for the aforementioned query set X , the VLAD code V ∈ Rkd is

obtained by stacking k Local Difference Vectors (LDV) vi aggregating the differences di − xt

in each cluster. More formally,

vi = ∑
xt∈di

di − xt , (3.2)
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where x ∈ di means that the local descriptor x belongs to the cluster defined by di, i.e., the

closest codeword to x is di.

Comparing Eq. (3.1) to Eq. (3.2), one can observe the followings about VLAD

1. VLAD equally characterizes the distribution of local descriptors with respect to the cen-

ters. Hence, VLAD can be conceived as a non-probabilistic version of the FV.

2. In contrast to FV, in VLAD the covariance matrices of the mixture components are as-

sumed to be diagonal and fixed, i.e., Σi = σId, ∀i ∈ {1, 2, · · · , k}.

3.4.2 Sparse Coding

In Euclidean spaces, the idea of sparse coding is to reconstruct the query input x by a linear

combination of codebook atoms, i.e., x = ∑k
i=1 di[y]i, such that a small number of codewords

is involved Wright et al. [2009]. The problem of coding the single query input xt can be

formulated as solving the following minimization problem

min
y

∥∥xt −
k

∑
i=1

di[y]i
∥∥2

+ λ
∥∥y
∥∥

1 , (3.3)

where λ is the sparsity-promoter regularizer.

Since the codebook D is usually selected to be over-complete, i.e., k > d, the regulariza-

tion is necessary to ensure that the under-determined system has a unique solution. Moreover,

generally pooling methods such as average pooling or max pooling are performed on the re-

sulting set Y = {yt}m
t=1, yt ∈ Rk, to generate the final representation for the query set X .

3.4.3 Locality-Constrained Linear Coding

LLC applies locality constraint to select similar atoms to the query and learns an affine combi-

nation of them to reconstruct the query Wang et al. [2010]. An approximated LLC algorithm

is proposed by Wang et al. [2010] which first performs a K-nearest-neighbor (Knn) search

and then analytically solves a constrained least squares problem. The affine combination of

weights ∑k
i=1[y]i = 1 (or equivalently 1Ty = 1) is considered to ensure a shift invariant code

is obtained
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min
y

∥∥xt − ∑
di∈Knn(xt)

di[y]i
∥∥2, (3.4)

s.t. 1Ty = 1.

3.4.4 Collaborative Coding

Zhang et al. [2011] show that collaboratively reconstructing the query vector by codewords is

effective for face recognition problem. To generate the face representation, a regularized least

squares problem is solved as follows

min
y

∥∥xt −
k

∑
i=1

di[y]i
∥∥2

+ λ
∥∥y
∥∥2 , (3.5)

where λ is the regularizer parameter.

Similar to the LLC coding, an analytic solution is obtained by zeroing out the derivative

with respect to the variable y. The induced sparsity is weaker than the original sparse coding

method as the `2 norm is used for regularization.

3.5 Riemannian Coding Methods

In this section, we present our coding methods on Riemannian manifolds. In what follows,

we assume that X = {X t}m
t=1, X t ∈ M and D = {Di}k

i=1, Di ∈ M, are a set of local

descriptors (extracted from a query image or video) and codewords on a Riemannian manifold

M, respectively. Moreover, let δ(·, ·) : M×M → R+ be a measure of similarity (e.g.,

geodesic distance) defined onM.

3.5.1 Riemannian Bag of Words

In its most straightforward and simplest form, for the query set X and the codebook D, a

representation y is obtained by BoW algorithm using the hard assignment strategy Sivic and

Zisserman [2003]. In this case, a histogram y ∈ Rk is obtained by assigning each query point

X t to its closest codeword from the setD using the given measure δ inM. The i-th dimension

of y, [y]i, is obtained using [y]i = #
(
X t ∈ Di

)
, where #(·) denotes the number of occurrences.
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This obviously requires m × k comparisons. In the end, in order to add robustness to the

number of extracted local descriptors, the resulting histogram is `2 normalized via ŷ = y
‖y‖ .

3.5.2 Riemannian Vector of Locally Aggregated Descriptors

The key inspiration in VLAD coding is that it has been successfully used in addressing many

challenging tasks such as image retrieval Jégou et al. [2012]; Gong et al. [2014], scene recog-

nition Gong et al. [2014] and texture classification Cimpoi et al. [2014] , significantly raising

the interest of the community in VLAD. The interest has even influenced the deep learning

community Gong et al. [2014]; Cimpoi et al. [2015]. Besides, the discriminative representa-

tion obtained by VLAD is the result of rudimentary vector addition and subtraction. Another

important merit is the reliance on small codebooks which further simplifies the learning stage

and increases the popularity of VLAD.

In this section, we derive a general formulation for Riemannian VLAD (R-VLAD). To this

end, we first start by devising R-VLAD on M when the similarity measure is the geodesic

distance, i.e., δG : M×M → R+. We then discuss our universal solution in which any

arbitrary similarity measure can take the role of δG and derive faster variants of R-VLAD.

We conclude this section by introducing an approach to enrich R-VLAD by encoding more

information about the distribution of the local descriptors and name it Higher Order R-VLAD

(HO-R-VLAD).

3.5.2.1 R-VLAD: the geodesic distance scenario

A closer look at the signature generation steps of the conventional VLAD reveals that the LDVs

are indeed the gradient of the `2 norm (or simply the Euclidean distance). By discarding the

associated normalization terms in the FV algorithm we arrive at equity of the FV and VLAD.

Having said that, it is easy to conclude that R-VLAD signature onM is obtained once we have

the following tools at our disposal

• a metric δ required to determine how the local descriptors should be assigned to the

codewords.

• operators to perform the role of vector addition or subtraction onM.

Since a Riemannian manifold is a metric space, it is natural to choose the geodesic distance

δG :M×M→ R+ to address the first requirement. As for the second requirement, we note

that on a Riemannian manifold, one can see a vector
−→
AB (attached at point A) as a vector
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of the tangent space at A, i.e., TAM. Therefore, subtraction on a Riemannian manifold can

be attained through the logarithm map, logA(·) : M → TAM. This concept has been used

widely in the literature. For example, vector subtraction through the logarithm map was used to

address the problem of interpolation and filtering Pennec et al. [2006], sparse coding Ho et al.

[2013] and dimensionality reduction Goh and Vidal [2008], to name a few. The aforementioned

discussion hints towards devising the R-VLAD as follows

• exploit the geodesic distance to determine the closest local descriptors to each codeword.

• build a Riemannian LDV per codeword using the tangent space attached to each code-

word on the manifold.

Since the pole of the tangent space (Di in our case) is fixed, the outputs of the logarithm

map are compatible with each other and no further special care (e.g., parallel transport) is

required1. Therefore, Eq. (3.2) on a curved Riemannian manifold boils down to

vi = ∑
X t∈Di

logDi
(X t) , (3.6)

where logDi
(·) is the logarithm map to the tangent space TDi .

Although being perfectly accurate, the computational load of δG seems to be the sticking

point as it leads to complex and slow algorithms, especially in our case where we have several

local descriptors per query image/video. To alleviate this limitation, several studies recommend

faster alternatives with excellent theoretical properties and similar results in practice Wang and

Vemuri [2004]; Cherian et al. [2012]; Arsigny et al. [2007]; Hamm and Lee [2008]. This

motivates us to engage other valid metrics and devise a universal form for our R-VLAD.

3.5.2.2 R-VLAD: arbitrary metric scenario

Obviously, for a new metric δ, we only need to take care of the second requirement. Since

the LDV can be understood as the gradient of the distance function in the Euclidean case (see

§ 3.4.1), it is tempting to define the LDV on M as ∑X t∈Di
∇Di δ

2(Di, X t)2. The following

theorem reinforces this idea even more.

1To be precise, this argument is valid as long as xt is not in the cut locus of ci. This is of course not a very
restricting assumption as in many manifolds (e.g., the SPD manifold) the cut locus is indeed empty.

2On an abstract Riemannian manifoldM, the gradient of a smooth real function f at a point X ∈ M, denoted
by ∇x f , is the element of TxM satisfying 〈∇x f , ζ〉x = D fx[ζ] for all ζ ∈ TxM, where D fx[ζ] denotes the
directional derivative of f at x in the direction of ζ.
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Figure 3.1: Illustration of the squared norm of the gradients vs distance for the projection distance on
G2

3 .

Theorem 1. For a Riemannian manifoldM, the gradient of the geodesic distance function,

δG :M×M→ R+ is

∇X δ2
G(X, Y) = −2 logX(Y). (3.7)

Proof. The interested reader is referred to Subbarao and Meer [2009] for the proof of this

theorem.

Unfortunately, choosing ∇Di δ
2(Di, X t) for LDV will not work in practice. The main

reason being that for δG, the norm of ∇X δ2
G(X, Y) is related directly to the metric, i.e.,

‖∇X δ2
G(X, Y)‖2 = 4‖ logX(Y)‖

2 = 4δ2
G(X, Y).

This is of course inherited to the Euclidean space when the metric is chosen to be the

geodesic distance, i.e., the Euclidean distance. However, this will not generalize to other met-

rics as shown by the following example.

Example 1. Fig. 3.1 shows the behavior of ‖∇X δ2(X, Y)‖2 by varying δ2(X, Y) for the pro-

jection metric on the Grassmann manifold G2
3 (see § 3.5.2.4 for the equations). Interestingly,

the norm of the gradient will start decreasing while the point Y gets farther away from X. Dur-

ing coding, a point which should contribute greatly to the descriptor, acts as an insignificant

point, hence deteriorating the discriminatory power.

The aforementioned example provides us with the following guideline for constructing an

LDV onM.
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Algorithm 1 The proposed R-VLAD algorithm
Input:

• local descriptors X = {X t}m
t=1, X t ∈ M, extracted from a query image or video,

• codebook D = {Di}k
i=1 , dk ∈ M

Output:

• V(X ) the Riemannian VLAD representation of X
1: for i = 1→ k do
2: Find X t ∈ Di, all nearest query points from X to Di
3: Compute vi, i-th Local Difference Vector (LDV), using Eq. (3.8)
4: end for
5: Concatenate the resulting LDVs to form the final descriptor, i.e., V(X ) =

[
vT

1 , vT
2 , · · · , vT

k
]T

• the length of the LDV should represent the metric considered onM.

As such, we propose the following form of LDV for our general R-VLAD descriptor (see

Algorithm 1 for a step-by-step on the R-VLAD technique)

vi = ∑
X t∈Di

ψδ(Di, X t) , (3.8)

where ψδ(D, ·) :M×M→ TDM is defined as

ψδ(Di, X t) = δ(Di, X t)
∇Di δ

2(Di, X t)

‖∇Di δ
2(Di, X t)‖

.

Remark 1. In line with the recommendations Jégou et al. [2012], post-processing of VLAD

codes could increase the discriminatory power of the codes. In practice, we normalize the

R-VLAD codes in two steps. First, an element-wise power normalization is performed using

the transfer function y : R → R, y(x) = sign(x)
√
|x|, where x is the element of VLAD

vector and | · | denotes absolute value. This is to avoid having a concentrated distribution

around zero. The power normalization is followed by an `2 normalization to make the energy

of descriptors uniform.

In the following two sections, we develop the R-VLAD for two widely used manifolds in

computer vision, i.e., the SPD and the Grassmannian manifolds (see Table 3.1 for a quick peak

at the studied metrics and the associated gradients as required by Eq. (3.8)).
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Table 3.1: Metrics and associated gradients on the SPD and Grassmannian manifold.

Manifold Metric δ2(X, Y) ∇X δ2

Sd
++ geodesic ‖ log(X−1/2YX−1/2)‖2

F 2X1/2 log(X−1/2YX−1/2)X1/2

Sd
++ Stein ln det

(
X+Y

2

)
− 1

2 ln det(XY) X(X + Y)−1X − 1
2 X

Sd
++ Jeffrey 1

2 Tr(X−1Y) + 1
2 Tr(Y−1X)− d 1

2 X
(
Y−1 − X−1YX−1)X

G p
d geodesic ‖Θ‖2 No analytic form
G p

d projection 2p− 2‖XTY‖2
F −4

(
Id − XXT)YYTX

3.5.2.3 R-VLAD on SPD Manifold

The gradient of a function f : Sd
++ → R at X has the following form on Sd

++ Sra and Hosseini

[2014]

∇X f = Xsym(D f )X, (3.9)

where sym(X) = 0.5(X + XT) and D f is the derivative of the function f : Rd×d → R with

respect to X.

The derivatives of Dδ2
S and Dδ2

J are reported in Cherian et al. [2012]3. From Cherian

et al. [2012] we can deduce the gradients required in the R-VLAD algorithm as depicted in

Table 3.1.

Computational Cost

The computational load of coding in R-VLAD is dominated by the complexity of the used met-

ric δ2 and its gradient. On top of this, one should pay attention to the complexity of Riemannian

codebook learning. As long as the complexity of coding is considered, the computational loads

of computing δ2
G, δ2

J and δ2
S are 4d3, 8/3d3 and d3, respectively Cherian et al. [2012]. Comput-

ing the gradient of δ2
G requires an eigenvalue decomposition (for computing principal matrix

logarithm) which adds up to a total of 9d3 flops for δ2
G (considering the matrix multiplications).

For δ2
J and δ2

S, computing gradient just requires a matrix inversion which is O(d3). As such,

the computational load of R-VLAD using δ2
J and δ2

S is O(17/3d3) and O(4d3), respectively.

3Note that in Table 3 of Cherian et al. [2012] a scalar factor of 0.5 is wrongly dropped from the Jeffrey diver-
gence (KLDM according to Cherian et al. [2012]). Also please note that the gradient reported in Cherian et al.
[2012] is the Euclidean gradient not the Riemannian as required here.
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3.5.2.4 R-VLAD on Grassmannian

The gradient of a function on Grassmannian, i.e., f : G p
d → R has the form

∇X f =
(

Id − XXT
)

D f , (3.10)

where D f is a d× p matrix of partial derivatives of f with respect to the elements of X , i.e.,

[D f ]i,j =
∂ f

∂[X]i,j
.

The logarithm map (and also the exponential map) on Grassmannian does not have an ana-

lytic form. However, numerical methods for computing both mappings do exist. In particular,

we will use the formulation introduced in Begelfor and Werman [2006] to compute R-VLAD

using the geodesic distance. As for the projection metric, using Eq. (3.10) and noting that

δ2
P(X, Y) = 2p− 2‖XTY‖2

F leads to the following analytic form for the gradient as required

in Eq. (3.8)

∇X δ2
P(X, Y) = −4

(
Id − XXT

)
YYTX. (3.11)

Computational Cost

We note that δ2
G on Grassmannian is obtained through Singular Value Decomposition (SVD).

As such, computing δ2
G requires dp2 + p3 flops on G p

d . In contrast, the complexity of comput-

ing δ2
P on G p

d is dp2. Computing the gradient of δ2
G (or logarithm map) using a very efficient

implementation requires a matrix inversion of size p × p, two matrix multiplications of size

d× p, and a thin SVD of size d× p. Computing thin SVD using a stable algorithm such as

the Golub-Reinsch Golub and Van Loan [1996] requires 14dp2 + 8p3 flops. This adds up to

a total of O
(
10p3 + 17dp2) flops for one local descriptor. As for δ2

p, computing the gradient

according to the Table 3.1 demands 4dp2 operations. This results in a total of 5dp2 flops for

the projection metric.

To give the reader a better sense on the computational complexity of R-VLAD using δ2
G

and δ2
P, we measured the coding time for 1000 videos each with its own set of local descriptors

on G6
177 (this is an example of the Grassmannian we will use in our experiments later). On a

quad-core machine using Matlab, coding time for δ2
P and δ2

G were observed to be around 155

and 440 seconds, respectively.
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3.5.2.5 Boosted R-VLAD

In this section, we introduce a variant of R-VLAD which in most cases further boosts the clas-

sification accuracy. We first note that the original VLAD formulation only considers simple

first-order statistics of the LDVs to generate the final descriptor. Peng et al. [2014] address

this issue and introduce coding of higher-order statistics into the VLAD framework. Assum-

ing training data is clustered using a codebook, the idea is to compute two additional super

vectors associated to each cluster, capturing the deviation of the LDVs from qualitative mea-

sures, namely the diagonal elements of the covariance matrix and the skewness of the training

samples. Similar in spirit to VLAD, the two forms of high-order statistics are coded as com-

plementary information.

Here, we further expand this idea to exploit complementary information and adapt it to our

R-VLAD descriptor. To this end, we use the definition of LDV in § 3.5.2.2. Let the vector σi

denotes diagonal elements of a covariance matrix constructed from the LDVs associated to Di

(training samples that are the closest to Di). In our case, the j-th element of the second-order

super vector is computed as follows

[vo2

i ]j =
1

#(X t ∈ Di)
∑

X t∈Di

[
ψδ(Di, X t)

]2
j −

[
σi
]2

j , (3.12)

with ψ defined below Eq. (3.8).

As for encoding the third-order statistics, skewness takes up the role of the diagonal ele-

ments of σi

[vo3

i ]j =

1
#(X t∈Di)

∑X t∈Di

[
ψδ(Di, X t)

]3
j[

1
#(X t∈Di)

∑X t∈Di

[
ψδ(Di, X t)

]2
j

] 3
2
−
[
Γi
]

j , (3.13)

where Γi is the skewness vector of the training LDVs belonging to the i-th codeword.

The two super vectors vo2

i and vo3

i are concatenated and augmented to the original R-VLAD

to form the final image/video signature. The power normalization is also performed in the end.

We will dub this solution as Higher Order R-VLAD (HO-R-VLAD) in our experiments.

3.5.3 Riemannian Sparse Coding

As discussed earlier (see § 3.4.2), the goal of SC is to find a sparse vector of coefficients y in a

way that a query point x is as close as possible to the linear combination ∑k
i=1 di[y]i. While in

Rn, this problem seems to be well formulated, the difficulty arises when the query point (and

subsequently each di) belongs toM, mainly because a universal coordinate system does not
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exist onM. One natural modification to the notion of usual sparse coding is introduced by Xie

et al. [2013] in which the term xt − ∑k
i=1 di[y]i in Eq. (3.3) is generalized for X ∈ M. The

affine constraint 1Ty = 1 is imposed to the code to avoid having the trivial solution y = 0.

The SC using the geodesic distance is cast as

min
y

k

∑
i=1

∥∥∥ logX

(
Di
)∥∥∥2

[y]i + λ
∥∥y
∥∥

1 , (3.14)

s.t. 1Ty = 1.

where logX(·) is the logarithm map to the tangent space TX and λ is the sparsity-promoter

regularizer Wright et al. [2009].

With the aid of LDVs defined in § 3.5.2.2, we generalize the affine SC scheme to be used

with an arbitrary metric δ. Our idea is to perform coding by minimizing the following objective

function

min
y

k

∑
i=1

∥∥∥ψδ(X, Di)
∥∥∥2
[y]i + λ

∥∥y
∥∥

1, (3.15)

s.t. 1Ty = 1.

where ψ is defined below Eq. (3.8).

Similar to Rn, the final descriptor of the set X is obtained by pooling the resulting {yt}m
t=1

codes. We refer to this method as Riemannian Sparse Coding (R-SC) in our experiments.

3.5.4 Riemannian Locality-constrained Linear Coding

Similar in spirit to SC is the LLC Wang et al. [2010] in which the sparsity is a by-product

of the locality constraint. LLC is easy to compute and gives superior image classification

performance than many sophisticated approaches Wang et al. [2010]. The locality constraint

is applied to select similar atoms of a codebook for coding. Like sparse coding, the goal is to

learn a linear combination of the chosen atoms to reconstruct each query point.

Similar to LLC in Rn, we have the luxury of a closed-form solution for our non-linear

LLC. Having a metric δ at our disposal, for a query point X ∈ M, we first find n� k nearest

neighbors from atoms ofD and then construct matrix C by stacking ψδ(X, Di) selected vectors

as its columns, i.e., C =
[
ψδ(X, D1)|ψδ(X, D2)| · · · |ψδ(X, Dn)

]
. Then, the LLC code y is

obtained by solving the following constrained least squares problem
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min
y

∥∥∥Cy
∥∥∥2

, (3.16)

s.t. 1Ty = 1.

Here, again the affine constraint 1Ty = 1 is imposed to avoid having the trivial solution

y = 0. As such, using the Lagrange multipliers technique, the code y is obtained in closed-

form as

y =

(
CTC

)−1
1

1T
(

CTC
)−1

1
. (3.17)

In practice, a numerically stable way to minimize Eq. (3.17) is obtained through solving the set

of n linear equations CTCy = 0 followed by rescaling the coefficients yi to ensure that 1Ty =

1 Saul and Roweis [2003]. We will dub this solution as Riemannian Locality-constrained

Linear Coding (R-LLC) in our experiments.

3.5.5 Riemannian Collaborative Coding

In contrast to LLC, CC uses all dictionary atoms to represent the query sample. In the orig-

inal CC, a regularized least squares problem is solved. Using δ, for a query point X ∈
M, we first construct matrix C by stacking ψδ(X t, Di) vectors as its columns, i.e., C =[
ψδ(X, D1)|ψδ(X, D2)| · · · |ψδ(X, Dk)

]
. Then, the code y ∈ Rk is obtained by solving the

following constrained regularized least squares problem

min
y

∥∥∥Cy
∥∥∥2

+ λ
∥∥y
∥∥2, (3.18)

s.t. 1Ty = 1.

To obtain the solution, again we use the Lagrange multipliers technique. Following a

similar procedure to R-LLC, we obtain y as

y =

(
CTC + λIk

)−1
1

1T
(

CTC + λIk

)−1
1

. (3.19)

We will dub this solution as Riemannian Collaborative Coding (R-CC) in our experiments.
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3.6 k-Means on Riemannian Manifolds

Before delving into experiments and for the sake of completeness, we provide details of learn-

ing a Riemannian codebook using different metrics introduced previously in §2.0.1. Like many

other codebook learning algorithms, mean computation is a fundamental building block in our

proposal. Therefore, we define the Fréchet mean which is incorporated in our Riemannian

codebook learning.

Definition 8. The Fréchet mean for a set of points {X i}n
i=1, X i ∈ M is the minimizer of the

cost function

D∗ , arg min
D

n

∑
i=1

δ2(D, X i) , (3.20)

where δ :M×M→ R+ is the associated metric.

Generally, an analytic solution for Eq. (3.20) may not exist and hence iterative schemes

that exploit the logarithm and exponential maps must be employed Pennec et al. [2006]. For

high-dimensional manifolds, this could easily become overwhelming. Therefore, one reason

in generalizations introduced in the previous section is that for some metrics Eq. (3.20) has

analytic solution.

We train a codebook similar to the standard k-means algorithm using an iterative approach.

The algorithm initiates by selecting k points from the training data randomly and calling them

cluster centers. In one step, all the training samples are assigned to their nearest cluster center

using the metric δ. In the next step, the cluster centers are re-estimated using the Fréchet mean.

On the SPD manifold and for the δG, the Fréchet mean is obtained using an iterative ap-

proach (see Pennec et al. [2006] for more details). For the Stein metric, we make use of the

following theorem.

Theorem 2. The Fréchet mean of a set of SPD matrices {X i}n
i=1 ∈ Sd

++ with δS is obtained

iteratively via

µ(t+1) =

[
1
n

n

∑
i=1

(X i + µ(t)

2

)−1
]−1

. (3.21)

Proof. See Cherian et al. [2012] for the proof.

Unlike δG and δS which do not have an analytic form for the Fréchet mean, with the Jeffrey

divergence, we have the luxury of obtaining the Fréchet mean analytically.
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Theorem 3. The Fréchet mean of a set of SPD matrices {X i}n
i=1 ∈ Sd

++ with δJ is

µ = P−1/2(P1/2QP1/2)1/2P−1/2 , (3.22)

where P = ∑i X−1
i and Q = ∑i X i.

Proof. The solution is obtained by zeroing out the derivative of ∑n
i δ2

J (X i, µ) with respect to

µ. At µ,
∂δ2

J (X i ,µ)
∂µ = 1

2 (X−1
i − µ−1X iµ

−1), we get

∂ ∑n
i δ2

J (X i, µ)

∂µ
=

n

∑
i=1

X−1
i −

n

∑
i=1

µ−1X iµ
−1 = 0

⇒ µ
n

∑
i=1

X−1
i µ =

n

∑
i=1

X i. (3.23)

The quadratic equation ABA = C is called a Riccati equation Bhatia [2007] and has the

following unique and closed form solution for B � 0 and C � 0

A = B−1/2(B1/2CB1/2)1/2B−1/2

Comparing the form of Eq. (3.23) with the Riccati equation concludes the proof. We note that

a different proof is also provided in Wang and Vemuri [2004].

Similarly, the projection metric has the following interesting property.

Theorem 4. The Fréchet mean for a set of points
{

X i
}n

i=1, X i ∈ G
p
d based on δP admits a

closed-form solution. That is the p largest eigenvectors of ∑n
i=1 X iXT

i .

Proof. We need to solve

µ∗ = arg min
µ

m

∑
i=1

∥∥∥µµT − X iXT
i

∥∥∥2

F
, (3.24)

s.t. µTµ = Ip.

We note that with the orthogonality constraint on points, i.e., µTµ = XT
i X i = Ip

n

∑
i=1

∥∥∥µµT − X iXT
i

∥∥∥2

F
= 2mp− 2

n

∑
i=1

Tr{µTX iXT
i µ}

= 2mp− 2 Tr{µT
( n

∑
i=1

X iXT
i

)
µ}.
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Therefore to minimize Eq. (3.24), one should maximize Tr{µT
(

∑n
i=1 X iXT

i

)
µ} by taking

into account the constraint µTµ = Ip, i.e.,

µ∗ = arg max
µ

Tr{µT
( n

∑
i=1

X iXT
i

)
µ}, (3.25)

s.t. µTµ = Ip.

The solution of Eq. (3.25) is obtained by computing the p largest eigenvectors of ∑n
i=1 X iXT

i

according to the Rayleigh-Ritz theorem Horn and Johnson [2012]; Faraki et al., which con-

cludes the proof.

3.7 Experiments

In this section, we present empirical evaluation of our proposal against the baseline and state-

of-the-art for a number of visual recognition problems defined on the SPD and Grassmannian

manifolds. In all our experiments, a set of overlapping blocks/cubes are extracted from im-

ages/videos. Then, each block/cube is represented by an RCovD or a linear subspace, hence it

corresponds to a point on the SPD or the Grassmannian manifold, respectively.

The straightforward Log-Euclidean alternative of devising VLAD on a Riemannian mani-

fold constitutes our first type of base-line. Here, we follow the terminology introduced in Ar-

signy et al. [2007] and label this as Log-Euclidean modeling or LE for short. Basically in the

LE modeling, the manifold is embedded into a vector space through a fixed tangent space (cen-

tered at the identity matrix in our case). Therefore, one advantage of this ahead transformation

of the points is that the rest of an encoding algorithm can be done by vector space algebraic

operations, i.e., without concerning about the underlying structure.

Furthermore, we will consider the popular BoW representation of an image or video as

another base-line method. Since the main step in BoW is measuring the distance of the query

points from codewords, both intrinsic and LE variants are imaginable and evaluated in our ex-

periments. In the intrinsic scenario, the codebook is learned by Riemannian k-means algorithm

as described in § 3.6. Different algorithms tested in this section are referred to as

BoWLE: Riemannian BoW model trained by flattening the manifold through the identity tan-

gent space.

R-BoWG: Riemannian BoW model using geodesic distance.
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R-VLADLE: Similar in concept to the BoWLE but instead of BoW, we assess the performance

of VLAD.

R-VLADG/J/S/P: R-VLAD using geodesic distance, the Jeffrey, Stein, or projection metrics.

HO-R-VLADG/J/S/P: Higher-Order R-VLAD using geodesic distance, the Jeffrey, Stein, or

projection metrics.

R-SCG/J/S/P: Riemannian sparse coding4 using geodesic distance, the Jeffrey, Stein, or pro-

jection metrics.

R-LLCG/J/S/P: Riemannian LLC coding using geodesic distance, the Jeffrey, Stein, or pro-

jection metrics.

R-CCG/J/S/P: Riemannian CC coding using geodesic distance, the Jeffrey, Stein, or projec-

tion metrics.

Besides the Log-Euclidean and R-BoWG methods that serve as baseline methods, we will

exclusively consider previous state-of-the-art algorithms for each studied problem to demon-

strate the power of our methods. Here, our motivation is to provide a comprehensive study of

the most popular coding techniques on a Riemannian manifold. Having the comparison at the

disposal, one will be able to pick the most suitable methods to address the problem at hand.

3.7.1 SPD Manifold

For tests on the SPD manifold, an image is described by a set of RCovDs. More specifically,

given a block I(x, y) of size W × H, let O = {oi}r
i=1, oi ∈ Rd be a set of r observations

extracted from I(x, y), e.g., oi concatenates intensity values, gradients, filter responses, etc.

for image pixel i. Then, block I can be represented by the d× d RCovD using Eq. (2.2). For

classification, the descriptors (e.g., Log-Euclidean or R-VLAD) are fed to a simple Nearest

Neighbor (NN) classifier which clearly shows the benefits of our proposal.

3.7.1.1 Head Pose Classification

We study the problem of head pose (orientation) classification utilizing two datasets, namely

Heads Of Coffee break (HOCoffee) and Queen Mary University of London (QMUL) datasets Tosato
4In our experiments, as we have seen slight differences in accuracy values using different pooling methods, we

maintain simplicity and adopt the average pooling method in constructing final descriptors.
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Figure 3.2: Examples of the HOCoffee and the QMUL datasets Tosato et al. [2013].

et al. [2013]. The HOCoffee dataset presents 18,117 low-resolution outdoor images, captured

by a head detector for the purpose of automatically detecting social interactions. The QMUL

head dataset is composed of 19,292 images, captured in an airport terminal. Images of both

datasets are of size 50× 50 pixels and split into a predefined training/test partition. There are

9,522 training and 8,595 test images in the HOCoffee dataset spanning six different classes

(orientations): back, front, front-left, front-right, left and right. While for the QMUL dataset,

10,517 images are used for training and the remaining 8,775 images are considered for testing.

The images are uniformly partitioned into five classes: back, front, left, right and background.

The classification task is quite challenging since the datasets feature non-homogeneous illumi-

nation and severe occlusions.

As for image descriptor, similar to Tosato et al. [2013], we used a Difference Of Offset

Gaussian (DOOG) filter-bank along color and image gradients for both datasets. More specif-

ically, the feature vector assigned to each pixel in the image is

ox,y =
[

IL(x, y), Ia(x, y), Ib(x, y),
√

I2
x + I2

y ,

arctan
( |Ix|
|Iy|

)
, G1(x, y), G2(x, y), · · · , G8(x, y)

]
,

where Ic(x, y), c ∈ {L, a, b}, denotes the CIELab color information at position (x, y), Ix and

Iy are luminance derivatives, and Gi(x, y) denotes the response of the i-th DOOG centered at

IL(x, y). Therefore, each local RCovD is on S13
++.

In the first column of Table 3.2, we report the recognition accuracies of all the studied

methods for the HOCoffee dataset. Several conclusions can be drawn here. First of all, even

the simple R-BOWG outperforms the previous state-of-the-art method, demonstrating the ad-
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Table 3.2: Recognition accuracies in % for the HOCoffee and QMUL datasets Tosato et al. [2013].

Method HOCoffee QMUL
WARCO 80.8 Tosato et al. [2013] 91.2 Tosato et al. [2013]

BOWLE 81.6 87.2
R-BOWG 81.8 87.6
VLADLE 82.4 87.8

R-SCG 83.2 91.7
R-SCS 83.1 91.6
R-SCJ 82.9 91.2

R-LLCG 84.0 92.1
R-LLCS 83.8 91.7
R-LLCJ 83.7 91.5

R-CCG 82.7 90.6
R-CCS 82.6 90.5
R-CCJ 82.4 90.1

R-VLADG 85.0 92.5
R-VLADS 84.9 92.5
R-VLADJ 84.5 92.2

HO-R-VLADG 85.3 92.9
HO-R-VLADS 85.0 92.7
HO-R-VLADJ 84.7 92.5

vantageous of local approaches. Compared to sparse coding techniques, R-VLAD coding with

all studied metrics achieve higher performances (with a NN classifier), with HO-R-VLADG

being the overall winner in terms of classification accuracy. However, the performance of R-

VLAD with the Stein and Jeffrey is on par or slightly worse than that of the geodesic solution

while being at least 27 times faster in coding and 65 times faster (especially for the case of

Jeffrey) in the training phase. We also observe that the proposed R-VLAD method is signifi-

cantly superior as compared to the Log-Euclidean methods, which suggests that the underlying

Riemannian structure is better exploited in R-VLAD.

Among sparse coding family methods, R-LLC using the geodesic distance obtains the

highest accuracy. Here, collaborative construction of codes using all codebook atoms as in the

variants of R-CC yields slightly inferior recognition accuracy. However, the accuracy numbers

are still better than the previous state-of-the-art.

The second column of Table 3.2, reports recognition accuracies of all the studied methods

for the QMUL dataset. Similar to the previous experiment, regardless of the metric, the perfor-
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mance is improved by considering the higher order information. The HO-R-VLADG achieves

the highest classification accuracy which is nearly 1.7 percentage points greater than Tosato

et al. [2013]. Furthermore, the R-VLADS works on par with the R-VLADG while both are the

preferred techniques to the R-VLADJ in terms of classification accuracy. Among the sparse

coding family methods, the highest accuracy is obtained when the geodesic distance is used

while sparse coding with the Jeffrey divergence yields the lowest accuracy number.

Moreover, we evaluated the performance of the VLAD in Euclidean space (VLADE) using

very small to large codebook sizes to obtain signatures with the dimensionality similar or

greater than that of R-VLAD’s signatures. We observed that R-VLAD is significantly superior

to VLADE. For instance, the best accuracy of VLADE on the HOCoffee and QMUL datasets

are 79.9% and 85.7%, respectively.

3.7.2 Grassmannian Manifold

For experiments on Grassmannian manifolds, we choose the application of recognition from

videos by image-set modelling of the videos to create Grassmannian points. Similar to the

experiments on the SPD manifolds, local descriptors of numerous small spatio-temporal blocks

of a video are extracted. Then each cube is described by a linear subspace through SVD

decomposition. We use a linear SVM classifier to further improve performances.

3.7.2.1 Dynamic Texture Classification

As our first experiment on Grassmannian manifolds, we tackled the task of dynamic texture

recognition using the Dyntex++ dataset Ghanem and Ahuja [2010]. Dynamic textures are

videos of moving scenes (such as Smoke, Waves, High way, Forest fire) that exhibit certain

stationarity properties in time domain. The DynTex++ dataset contains 3600 (50× 50× 50)

videos of moving scenes in 36 classes (see the first row in Fig. 3.3 for some examples).

To extract local Grassmannian points, each video was decomposed into 3D blocks of size

15 × 15 × 15 with spatio/temporal overlap of 5 pixels/frames. Then, the 3D blocks were

described by grouping their internal frames and describing each with the 3D extension of the

Local Binary Pattern (LBP) Ojala et al. [2002], namely LBP in Three Orthogonal Planes (LBP-

TOP) Zhao and Pietikainen [2007]. For each cube and from the LBPTOP features, we extracted

a subspace of dimension 6 using SVD. This resulted in having local descriptors on G6
177. In

total, we obtained 512 subspaces (Grassmannian points) from each video.

For this experiment, we followed the evaluation protocol used in Baktashmotlagh et al.

[2014]. More specifically, half of the videos of each class were randomly chosen as training
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data and the remaining ones were used as test data. The process of random selection was

repeated 10 times and average accuracy numbers along standard deviations are reported in the

second column of Table 3.3.

Table 3.3 shows that using the projection metric, the proposed R-VLAD outperforms the

state-of-the-art by more than 5 percentage points. Compared to Log-Euclidean solution, again

R-VLAD is preferable though the gap is not as big as that of the previous experiment. Similar

to the previous experiments, again R-VLAD is superior to the VLAD using the Log-Euclidean

solution. However, the Log-Euclidean VLAD performs better than the state-of-the-art method

of Baktashmotlagh et al. [2014]. Moreover, HO-R-VLAD boosts the accuracy values when the

geodesic or projection metrics are utilized as similarity measures. HO-R-VLAD with projec-

tion metric, the HO-R-VLADP, achieves the highest average recognition rate of 97.8%.

3.7.2.2 Dynamic Scene Categorization

We conducted another experiment to classify videos of dynamic scenes (similar to the dynamic

texture videos) using the Maryland "In-The-Wild" dataset Shroff et al. [2010]. The dataset is

very challenging due to the web nature of videos, having significant camera motions, scene

cuts, differences in appearance, frame rate, scale, viewpoint and illumination conditions. The

videos span 13 categories (e.g., Avalanche) with 10 videos per each class. Some class examples

are shown in Fig. 3.3.

Following the standard setup used in Faraki et al. [2016], we utilized the FC7 features of

the CNN of Zhou et al. Zhou et al. [2014] trained on the Places dataset Zhou et al. [2014] with

205 scene classes and 2,5 million images. The utilized features are 4096 dimension which we

subsequently reduce them to 400. To extract local Grassmannian points, we generated linear

subspaces of order 6 by grouping every six consecutive frames with 90% overlap. As such

each local descriptor belongs to G6
400. A leave-one-video-out validation protocol is used for

consistency with previous study in Faraki et al. [2016]; Feichtenhofer et al. [2014].

The recognition accuracies for all the studied methods are shown in the third column of

Table 3.3. To the best of our knowledge, the recent work of Faraki et al. [2016] has achieved

the highest accuracy on this dataset. Our HO-R-VLAD using the grassmannian geodesic met-

ric outperforms this state-of-the-art by 1.5%. Furthermore, the HO-R-VLAD using the pro-

jection metric achieves the highest accuracy, outperforming the state-of-the-art by more than

3 percentage points. Notably, HO-R-VLAD is superior to the R-VLAD using both metrics.

Compared to the Log-Euclidean solution, R-VLAD is preferable, indicating the advantage of

our proposal.



36 Riemannian Coding

Figure 3.3: Examples of the DynTex++ Ghanem and Ahuja [2010] (first row), Maryland Shroff et al.
[2010] (second row) and YTC Kim et al. [2008] (third row) datasets.

3.7.2.3 Face Recognition

As the last experiment, we considered the task of video-based face recognition. To this end, we

considered the YouTube Celebrity (YTC) dataset Kim et al. [2008] which contains 1910 videos

of 47 people (see Fig. 3.3). The large diversity of poses, illumination and facial expressions in

addition to high compression ratio of face images provide significant challenges in this dataset.

For our evaluation, we followed the widely used setup in Deep Reconstruction Models

(DRM) by Hayat et al. [2015]. More specifically, from each video, the face regions were first

extracted using the tracker of Ross et al. [2008]. Then, without any further refinement, each

face region was divided into distinct non-overlapping blocks and the histogram of LBP was

extracted for each patch and concatenated to form the final frame descriptors.

As for the evaluation protocol, we note that various protocols were used by researchers

on this dataset. Here again, we followed the five-fold cross validation protocol introduced

in Hayat et al. [2015] which divides the whole dataset equally (with minimum overlap) into

five folds with 9 videos per subject in each fold. Three of the videos were randomly selected

for training while the remaining six were used for testing. We generated linear subspaces of

order 6 by grouping features of every 6 consecutive frames. Therefore, each local descriptor

belongs to G6
928.

The last column of Table 3.3 summarizes the average recognition rates and the standard
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Table 3.3: Recognition accuracies in % for the Maryland Shroff et al. [2010], Dyntex++ Ghanem and
Ahuja [2010] and YTC Kim et al. [2008] datasets. The previous best methods applied on the datasets
are Baktashmotlagh et al. [2014], Faraki et al. [2016] and Hayat et al. [2014], respectively.

Method Dyntex++ Maryland YTC
Previous Best 92.4 90.0 72.6 ± 5.1

BOWLE 81.1 ± 0.5 84.6 55.3 ± 2.9
R-BOWG 92.4 ± 0.5 85.4 64.5 ± 5.1
VLADLE 93.3 ± 0.4 86.9 65.2 ± 2.8

R-SCG 96.0 ± 0.4 87.7 74.1 ± 3.0
R-SCP 96.1 ± 0.2 88.5 74.8 ± 5.2

R-LLCG 96.3 ± 0.3 88.5 75.7 ± 3.2
R-LLCP 96.3 ± 0.2 90.0 76.7 ± 4.8

R-CCG 95.4 ± 0.5 86.9 75.2 ± 2.9
R-CCP 95.8 ± 0.4 87.7 75.4 ± 2.0

R-VLADG 96.7 ± 0.3 90.0 75.6 ± 2.5
R-VLADP 97.6 ± 0.4 90.8 79.9 ± 3.6

HO-R-VLADG 97.0 ± 0.7 91.5 78.7 ± 3.8
HO-R-VLADP 97.8 ± 0.4 93.1 79.8 ± 3.7

Table 3.4: Computational loads of our coding methods in S13
++ (first row) and in G6

177 (second row) in
seconds.

R-SCG R-SCS R-SCJ R-LLCG R-LLCS R-LLCJ R-CCG R-CCS R-CCJ R-VLADG R-VLADS R-VLADJ

7.1 5.9 6.3 6.8 5.0 6.1 7.0 5.2 6.2 2.1 0.4 0.1

R-SCG R-SCP R-LLCG R-LLCP R-CCG R-CCP R-VLADG R-VLADP

31.6 25.6 25.8 19.6 27.8 21.3 0.3 0.2

deviations of all the studied methods. The results are self-explanatory. The R-VLAD with both

geodesic and projection metric comfortably outperforms the state-of-the-art DRM algorithm.

Furthermore, the accuracy gap between the Log-Euclidean solution and R-VLAD exceeds

10 percentage points. While encoding higher-order information improves the accuracy of R-

VLAD using the geodesic distance, the maximum accuracy of 79.9% is achieved by R-VLAD

when the projection metric is utilized.

Here, R-LLC coding is still the preferred coding method among the sparse coding schemes.

Furthermore, collaborative coding improves the performance over simple sparse coding with

both metrics, indicating this type of coding is more useful -as originally devised- for face

recognition task.
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3.7.3 Computational Load

To give the reader a better picture on the computational load of our coding methods, we

recorded the average coding times for 100 descriptors on S13
++ and G6

177. These are indeed

examples of the SPD and Grassmann manifolds which we had in our experiments. Table 3.4

shows the recorded times using Matlab on a quad-core computer, when different metrics are

used in our coding methods. Since the extra computational load in HO-R-VLAD (over R-

VLAD) is negligible, we removed that coding from the table.

3.8 Conclusions

Inspired by the recent success of coding/aggregating methods in Euclidean spaces and superior

discriminative power of the descriptors on Riemannian manifolds, in this chapter we studied

Riemannian coding methods such as VLAD and SC. In particular, we considered structured

local descriptors from visual data, namely RCovD and linear subspaces that reside on the

manifold of SPD matrices and the Grassmannian manifolds, respectively. In addition to a

comprehensive formulation, we devised a family of methods that benefits from various forms

of similarity measures defined on the underlying manifolds. An extensive set of experiments

on several challenging vision tasks including head pose classification, face recognition from

videos and dynamic scene categorization supported our proposal.

In the next chapter, we introduce some special types of covariance descriptors and similar-

ity measures for them to perform inference methods.



Chapter 4

Infinite-Dimensional and

Rank-Deficient Covariance

Descriptors: Two Special Cases

4.1 Overview

In this chapter, we study two special types of covariance descriptors which do not readily con-

form to the usual development for Symmetric Positive Definite (SPD) matrices presented in

§ 2.0.1. We introduce methods to estimate infinite-dimensional Region Covariance Descriptors

(RCovD) as the first special case. To do so, we exploit two feature mappings, namely random

Fourier features Rahimi and Recht [2007] and the Nyström method Baker [1977]. Gener-

ally speaking, infinite-dimensional RCovDs offer better discriminatory power over their low-

dimensional counterparts. However, the underlying Riemannian structure, i.e. the manifold of

SPD matrices, is out of reach to great extent for infinite-dimensional RCovDs. To overcome

this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use

of the aforementioned explicit mappings. We will empirically show that the proposed finite-

dimensional approximations of infinite-dimensional RCovDs consistently outperform the low-

dimensional RCovDs for image classification task, while enjoying the Riemannian structure of

the SPD manifolds. Moreover, our methods achieve the state-of-the-art performance on three

different image classification tasks.

Furthermore, we introduce novel similarity measures specifically designed for rank-deficient

covariance descriptors, i.e. Symmetric Positive Semi-Definite (SPSD) matrices. In doing so,

we are inspired by the fact that representing images and videos by covariance descriptors and

leveraging the inherent manifold structure of SPD matrices leads to enhanced performances in

various visual recognition tasks. However, when covariance descriptors are used to represent

39
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image sets, the result is often rank-deficient. Thus, most existing approaches adhere to blind

perturbation with predefined regularizers just to be able to employ inference tools Wang et al.

[2012]. To overcome this problem, we derive positive definite kernels that can be decomposed

into the kernels on the cone of SPD matrices and kernels on the Grassmann manifolds. Our

experiments evidence that, our method achieves superior results for image set classification

on various recognition tasks including hand gesture classification, face recognition from video

sequences, and dynamic scene categorization.

4.2 Introduction

The technical contribution in this chapter is twofold. Hence, to increase readability we present

our novelties in two main parts.

Infinite-Dimensional RCovDs

We propose methods to approximate the recently introduced infinite-dimensional RCovDs Ha-

randi et al. [2014a]; Quang et al. [2014]. The motivation here stems from the fact that the

Riemannian geometry -which is essential in analyzing RCovDs- does not apply verbatim to

the infinite-dimensional case. Hence, by approximating the infinite-dimensional RCovDs with

finite-dimensional ones, one could seamlessly exploit the rich geometry of RCovDs and tools

developed upon that to do the inference.

In an attempt to encode more information in RCovDs, harandi et al. have recently in-

troduced infinite-dimensional RCovDs Harandi et al. [2014a]. To this end, a mapping from

the low-dimensional Euclidean space to a Reproducing Kernel Hilbert Space (RKHS), i.e.

φ : Rd → H, is used along the kernel trick to compute several forms of Bregman diver-

gences between infinite-dimensional RCovDs in H. In practice, infinite-dimensional RCovDs

are rank deficient. This is because a valid d-dimensional RCovD requires more than d indepen-

dent observations which translates into the impractical situation of having endless observations

for the infinite-dimensional RCovDs. This difficulty, while partly resolved through regulariza-

tion, deprives us from exploiting the geometry of the space. More specifically, tangent spaces,

exponential and logarithm maps, and geodesics are out of reach to our best knowledge.

We overcome the aforementioned issue by introducing two methods to approximate infinite-

dimensional RCovDs by finite-dimensional ones. To this end, we use random Fourier features

and the Nyström method to learn a mapping z : Rd → RD, d ≤ D such that 〈φ(xi), φ(xj)〉H '
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z(xi)
Tz(xj). Having the mapping z(·) at our disposal, we approximate the infinite-dimensional

RCovDs with D×D SPD matrices and take advantage of the Riemannian geometry of SD
++ to

analyze the resulting RCovDs. We will show that both methods constantly outperform the low-

dimensional RCovDs and achieve the state-of-the-art performance on three challenging image

classification tasks, namely material categorization, virus cell identification, and scene classi-

fication. Moreover, our experiment shows that the RCovDs in the learned space could even

outperform the infinite-dimensional ones. This is of course inline with findings in Lopez-Paz

et al. [2014]; Rahimi and Recht [2009]; Le et al. [2013].

Symmetric Positive Semi-Definite Matrices

SPSD matrices naturally arise for applications where the number of observed samples is lower

than the dimensionality of the samples, and a covariance matrix is used to represent the ob-

servations. One such application is image set classification where each set contains a num-

ber of images that belong to the same class. Compared to single image based classification,

recognition from image sets has a significant advantage of efficiently exemplifying intra-class

appearance variations such as pose changes, illumination differences, partial occlusions, and

object deformations through multiple representatives Chen et al. [2013]; Hayat et al. [2014].

Therefore, proper modeling of image sets permits utilizing intra-class variation in the set as a

complementary cue, thus enables discriminative representations Mahmood et al. [2014].

Covariance descriptors provide rich yet compact representations for image set modeling as

they allow fusing various image cues while attenuating the impact of noisy samples through

their averaging process Wang et al. [2012]; Faraki et al. [2014b]. Full rank covariance de-

scriptors are symmetric and positive definite. Thus, from a geometrical point of view lie on

the Riemannian manifold of SPD matrices. Given the power of modern inference frameworks

on SPD manifolds (e.g., Faraki et al. [2015c,a]; Bonnabel and Sepulchre [2009]; Wang et al.

[2012]; Faraki et al. [2015b]), several recent studies opt for modeling image sets using covari-

ance descriptors Wang et al. [2012]; Faraki et al. [2014b].

Despite their success, a subtle point seems to be ignored. The covariance descriptor con-

structed from an image set is very unlikely to be full rank. This is simply because the di-

mensionality of the image descriptor is often greater than the number of available images in a

set.

To overcome this difficulty, previous studies Wang et al. [2012]; Harandi et al. [2014b]

adhere to ad-hoc solutions. One popular choice is to regularize the rank-deficient covariance
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Figure 4.1: Recognition performance of a conventional nearest neighbor classifier using full rank
matrices by regularizing the rank-deficient covariance descriptor. As seen, the performance changes
drastically from 15% to 82% for different values of the regularization parameter ε.

descriptor (e.g., by adding a positive small value to the zero eigenvalues of the matrix). Such

a regularization nonetheless may deteriorate the performance as shown in Figure 4.1. This is a

very practical, albeit overlooked, problem lacking of a competent solution.

We propose a principle way of analyzing rank-deficient covariance descriptors by

• Making use of the distances defined on the manifolds of SPSD matrices.

• Introducing positive definite kernels on SPSD manifolds towards using kernel machines

along rank-deficient covariance matrices.

Our experiments demonstrate the superiority of the proposed methods against several base-

line and state-of-the-art methods. To the best of our knowledge, using the standard testing

protocol, our method with the proposed kernels obtained in this new geometry equipped with

kernel discriminant analysis classifier achieves the best reported results on standard image set

classification benchmarks: 91.1% for Cambridge hand gesture recognition Kim et al. [2007b],

72.8% for YouTube celebrities face recognition Kim et al. [2008], and 90.0% for Maryland

dynamic scene recognition Shroff et al. [2010].

4.3 Approximate Infinite-Dimensional RCovDs

We start this section by revisiting the region covariance descriptors Tuzel et al. [2008]. Let

X =
[

x1|x2| · · · |xn

]
, xi ∈ Rd be a d× n matrix of n observations (extracted from an image
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Figure 4.2: A conceptual example of our proposed image set representation. Image set is represented
by an SPSD matrix A which is further decomposed to a linear subspace U and an SPD matrix R.

or a video). The RCovD C ∈ Sd
++ as its name implies is defined as

C =
1
n

n

∑
i=1

(xi − µ)(xi − µ)T = X JJTXT, (4.1)

where µ = 1
n ∑n

i=1 xi is the sample mean of the observations, J = n−
3
2 (nIn − 1n1T

n ), and 1n

is a column vector of n ones.

Based on Eq. (4.1), an RCovD CX in an RKHSH with dimensionality |H| can be defined

as

CX = ΦX J JTΦT
X , (4.2)

where ΦX =
[
φ(x1)|φ(x2)| · · · |φ(xn)

]
and φ : Rd → H is the implicit mapping toH.

While embeddings into an RKHS seems preferable in many applications, the applicability

of infinite-dimensional RCovDs is limited. This is evident by considering the situation where

the dimensionality |H| approaches ∞, which leads to CX being semi-definite. As a conse-

quence, CX is on the boundary of the positive cone and at infinite distance form SPD matrices.

In the following two sections, we will show how an infinite-dimensional CX can be ap-

proximated by a finite D× D one.

4.3.1 Random Fourier Features

We start this section by providing a brief description of the method of random Fourier features

for approximating φ(·). Since in our experiments in § 4.3.3, we will only use RBF kernel, we
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limit the discussion here to this special kernel. The signature of other important kernels can be

found in Rahimi and Recht [2007]; Vedaldi and Zisserman [2012].

According to the Bochner theorem Rudin [2011], a shift-invariant kernel1 such as RBF

kernel can be obtained by the following Fourier integral

k(xi − xj) =
∫

Rd
p(ω)ejωT xi e−jωT xj dω. (4.3)

In other words, k(xi, xj) = k(xi − xj) is the expected value of ζω(xi)ζ
∗
ω(xj) according

to the distribution p(ω) where ζω(x) = ejωT x . As shown in Rahimi and Recht [2007], the

function zF(x) =
√

2 cos(ωTx + b) satisfies the aforementioned criterion for real kernels,

i.e., E[zF(xi)zF(xj)] = k(xi, xj) with ω and b being random variables drawn from p(ω) and

[0, 2π], respectively. For the RBF kernel k(xi, xj) = exp(−‖k(xi − xj)‖2/2σ2), p(ω) =

N (0, σ−2Id) Rahimi and Recht [2007].

As such, let ω1, ω2, · · · , ωD, ωi ∈ Rd, be i.i.d samples drawn form the normal distribu-

tion N (0, σ−2Id) and b1, b2, · · · , bD be samples uniformly drawn from [0, 2π]. Then, the D

dimensional estimation of φ(x) is given by

zF(x) =

√
2
D

[
cos(ωT

1 x + b1), · · · , cos(ωT
Dx + bD)

]
. (4.4)

Having the mapping zF : Rd → RD at our disposal, our first estimation of an infinite-

dimensional RCovD can be obtained as

ĈX = ΦX J JTΦT
X , (4.5)

where ΦX =
[
zF(x1)|zF(x2)| · · · |zF(xn)

]
.

Algorithm 2 outlines the details of computing RCovDs using random Fourier features for

the RBF kernel.

4.3.2 Nyström Method

While in § 4.3.1, an approximation to the embedding function φ(·) was provided, we note

that not only an arbitrary kernel k(·, ·) may not satisfy the Bochner theorem (e.g., if it is not

shift-invariant), but even if it is, it may not be possible to obtain p(ω) analytically. To alleviate

this limitation, we propose a data-dependent estimation of the RKHS H using the Nyström

method Baker [1977].

1A kernel function is shift invariant if k(xi, xj) = k(xi − xj).
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Algorithm 2 Approximate infinite-dimensional RCovD using random Fourier features
Input:

• X =
[
x1|x2| · · · |xn

]
, xi ∈ Rd, matrix of n feature vectors

• σ2, scale of the RBF kernel

• D, target dimensionality

Output:

• ĈX ∈ SD
++, approximate infinite-dimensional RCovD

1: {ωi}D
i=1 ← i.i.d samples drawn from N (0, σ−2Id×d).

2: {bi}D
i=1 ← uniform samples drawn from [0, 2π].

3: for j = 1→ n do
4: Compute zF(xj) using Eq. (4.4).
5: end for
6: Compute ĈX using Eq. (4.5)

Given D = {x1, x2, · · · , xM} a collection of M training examples2, a rank D approxi-

mation of K = [k(xi, xj)]M×M can be written as ZTZ. Here, ZD×M = Σ1/2V with Σ and

V being the top D eigenvalues and corresponding eigenvectors of K. Based on this low-rank

approximation, one can obtain a D-dimensional vector representation of the space K as

zN(x) = Σ−1/2V
(

k(x, x1), · · · , k(x, xM)
)T

. (4.6)

Given X =
[

x1|x2| · · · |xn

]
, a set of n observations, the corresponding RKHS region

covariance descriptor estimation using the Nyström method is obtained as

ĈX = ΦX J JTΦT
X , (4.7)

where ΦX =
[
zN(x1)|zN(x2)| · · · |zN(xn)

]
.

Algorithm 3 summarizes the discussion about estimating RCovDs using the Nyström method

in one pseudo-code.

4.3.3 Experiments

In this section, we evaluate the proposed approximate infinite-dimensional RCovDs on three

different classification tasks, namely material categorization, virus cell identification, and scene

2Observations extracted from training images in our case.
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Algorithm 3 Approximate infinite-dimensional RCovD using the Nyström method
Input:

• X =
[
x1|x2| · · · |xn

]
, xi ∈ Rd, matrix of n feature vectors

• D = {xi}M
i=1, xi ∈ Rd, a collection of training examples

• D, target dimensionality

Output:

• ĈX ∈ SD
++, approximate infinite-dimensional RCovD

1: Compute the kernel matrix K = [k(xi, xj)]M×M.
2: Σ← diagonal matrix of top D eigenvalues of K.
3: V ← associated eigenvectors of Σ.
4: for j = 1→ n do
5: Compute zN(xj) using Equation 4.6.
6: end for
7: Compute ĈX using Equation 4.7.

classification. For benchmarking, we compare the accuracy of the Nearest Neighbor (NN) clas-

sifier on low-dimensional manifold against NN in higher-dimensional manifolds obtained by

random Fourier features or the Nyström method.

Beside NN classifier, we will evaluate the performance of the state-of-the-art method of

Covariance Discriminant Learning (CDL) Wang et al. [2012] for low and high-dimensional

SPD manifolds. The CDL technique utilizes the identity tangent space of the SPD manifold to

perform kernel Partial Least Squares (kPLS) Rosipal and Trejo [2002]. Partial Least Squares

(PLS) can be understood as a dimensionality reduction technique that models relations between

two sets of variables through a latent space. In the context of classification, PLS and its kernel-

ized version can be used to model the relations between feature vectors and their representative

classes.

The different algorithms evaluated in our experiments are referred to as

• NN: AIRM based NN classifier on low-dimensional RCovDs.

• NNF: AIRM based NN classifier on approximate infinite-dimensional RCovDs ob-

tained by random Fourier features.

• NNN: AIRM based NN classifier on approximate infinite-dimensional RCovDs ob-

tained by the Nyström method.

• CDL: CDL on low-dimensional RCovDs.
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• CDLF: CDL on approximate infinite-dimensional RCovDs obtained by random Fourier

features.

• CDLN: CDL on approximate infinite-dimensional RCovDs obtained by the Nyström

method.

In what follows, we first elaborate on how rich RCovDs can be obtained for each task. This

is followed by in-depth discussions on the performance of approximate infinite-dimensional

RCovDs obtained through the processes described in § 4.3.1 and § 4.3.2, respectively.

4.3.3.1 Material Categorization

Material categorization is the task of classifying materials from their appearance in single

images taken under unknown viewpoint and illumination conditions. For this experiment,

we have used the UIUC material classification dataset Liao et al. [2013] which contains 18

classes of complex material categories “taken in the wild” (see Fig. 4.3 for sample images).

The images were mainly selected to have various geometric fine-scale details. We split the

database into training and test sets by randomly assigning half of the images of each class to

the training set and using the rest as test data. The process of random splitting was repeated 10

times and the average recognition accuracies along standard deviations will be reported here.

To generate RCovDs, a feature vector is assigned to each pixel at position (x, y) in an

image I by

F(x,y) =
[

IR(x, y), IG(x, y), IB(x, y),
∣∣∣∣ ∂I
∂x

∣∣∣∣ ,
∣∣∣∣ ∂I
∂y

∣∣∣∣ ,
∣∣∣∣ ∂2 I
∂x2

∣∣∣∣ ,∣∣∣∣ ∂2 I
∂y2

∣∣∣∣ , |G(0,0)(x, y)|, · · · , |G(u,v)(x, y)|
]

, (4.8)

where Ic(x, y), c ∈ {R, G, B}, denotes color information, the next four entries are the mag-

nitude of intensity gradients and the magnitude of Laplacians along x and y directions, and

G(u,v)(x, y) is the response of a 2D Gabor wavelet Lee [1996] centered at (x, y) with ori-

entation u and scale v. We extracted Gabor wavelets at four orientations and three scales.

Therefore, each pixel is described by a 19 dimensional feature vector (i.e., 3 color, 4 gradients,

and 12 Gabor features).

Table 4.1 shows the recognition accuracies for the studied methods. The correct classifi-

cation rates obtained by simple NN clearly show that the proposed RCovDs are more discrim-

inative than their low-dimensional counterparts. More specifically, when using the random
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Figure 4.3: Sample images for datasets used in this work. Top: UIUC Liao et al. [2013], Middle:
Virus Kylberg et al. [2011], Bottom: TinyGraz03 Wendel and Pinz [2007].

Fourier features and the Nyström methods to generate RCovDs, the average accuracy numbers

boost from 26.5% to 35.9% and 35.6%, respectively. We also note that NNF and NNN achieve

comparable performances to the more involved CDL in low-dimensional manifold.

The state-of-the-art performance on this dataset is 43.5% reported by Liao et al. [2013].

CDL on the proposed RCovDs (both random Fourier features and Nyström) outperforms the

state-of-the-art performance by at least 2.8% percentage points.

4.3.3.2 Virus Classification

We performed an experiment to classify cell images using the Virus dataset Kylberg et al.

[2011]. The dataset contains 1500 images of 15 different classes (100 samples per class).

The images are formed from Transmission Electron Microscopy technique and re-sampled to

41× 41 pixel gray-scale image (see Fig. 4.3 for examples). Here, RCovDs are obtained using

the features described in Eq. (4.8) with one modification. For this task, we used Gabor wavelets

at four orientations and five scales.

Our empirical results are reported in Table 4.1. The average correct recognition rate with

both CDLF and CDLN is superior to the state-of-the-art performance of 81.2% reported

in Harandi et al. [2014a] using infinite-dimensional RCovDs. We conjecture that computing

the RCovDs with both random Fourier features and the Nyström method reveals the nonlinear

patterns in data (as also evidenced in Lopez-Paz et al. [2014]). This is emphasized by the

Riemannian structure of SD
++ (as CDL requires its tangent space) which is not available for the

infinite-dimensional RCovDs.
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Table 4.1: Recognition accuracies for the UIUC Liao et al. [2013], Virus Kylberg et al. [2011], and
TinyGraz03 Wendel and Pinz [2007] datasets.

Method UIUC Virus TinyGraz03
NN 26.5% ± 3.7 58.8% ± 5.4 34%
NNF 35.9% ± 3.0 67.1% ± 4.2 42%
NNN 35.6% ± 2.7 69.5% ± 4.8 44%
CDL 36.3% ± 2.0 75.5% ± 2.5 41%
CDLF 47.4% ± 3.1 82.5% ± 2.9 55%
CDLN 46.3% ± 2.6 81.4% ± 3.1 57%

4.3.3.3 Scene Classification

For the last experiment, we considered the task of scene classification using TinyGraz03

dataset Wendel and Pinz [2007]. The dataset contains 1148 indoor and outdoor images (see

Fig. 4.3 for examples) with a spatial resolution of 32× 32 pixels. The images are presented

in 20 classes with at least 40 samples per class. This dataset is quite diverse, with scene cate-

gories being captured from various viewpoints and under various lighting conditions. We used

the recommended train/test split provided by the authors. The correct recognition rate achieved

by humans on this dataset is 30% Wendel and Pinz [2007].

The RCovDs for this task were obtained using the first 7 features in Eq. (4.8) (i.e., 3 color

and 4 image gradients). Table 4.1 indicates that computing RCovDs using random Fourier

features and the Nyström method offers notable enhancement in term of discriminatory power

over the original RCovDs. We also note that NNF and NNN outperform the more involved

CDL.

The state-of-the-art recognition accuracy on this dataset is reported to be 46% Wendel and

Pinz [2007]. Interestingly, CDLF and CDLN significantly outperform the state-of-the-art

method (more than 9 percentage points) and human performance (more than 25 percentage

points).

4.4 Image Set Classification by Symmetric Positive Semi-Definite

Matrices

Similar to previous section, we start by looking at how a covariance descriptor is made for

image set classification task. Let Rd×p 3 F =
[

f 1| f 2| · · · | f p

]
denote a set containing the

d-dimensional feature descriptors of p images of an image set. The covariance descriptor C
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representing the set F is

C =
1

p− 1

p

∑
i=1

( f i − µ)( f i − µ)T, (4.9)

where µ = 1
p ∑

p
i=1 f i is the sample mean of the observations.

When d > p, C is rank-deficient, which means that the resulting matrix is on the boundary

of the positive cone. As such, the machineries developed using SPD geometry to analyze such

covariance descriptors will be no longer available. For instance, the distance from any SPD

matrix to C would be infinite according to the AIRM. To overcome this issue, off-the-shelf

treatment (for example proposed in Wang et al. [2012]) is through regularizing the original C,

i.e.,

C∗ = C + εId , (4.10)

where ε is a constant and Id is the d× d identity matrix.

As we will show in our experiments, the perturbation deteriorates the discriminatory power

of covariance descriptors. Here, we are interested in taking the advantage of true geometry of

the resulting covariance descriptors. To this end, we make use of the Riemannian structure

of SPSD matrices of fixed rank introduced by Bonnabel and Sepulchre Bonnabel and Sepul-

chre [2009]. Below, we briefly discuss the natural metric and the geodesic distance for SPSD

matrices and then turn our attention to create valid positive definite kernels.

4.4.1 Earlier Works

Almost all image set classification techniques have to make two major decisions: 1. how to

represent an image set, and 2. what metric to use to measure the similarity between sets.

From the representation point of view, existing solutions can be divided roughly into

model-driven and topology-driven approaches. As for the model-driven methods such as Li

et al. [2009]; Nishiyama et al. [2007], it is usually assumed that the images within a set be-

long to a certain parametric form (e.g. distribution). Once, the model for each image set is

determined, the similarity between sets can be obtained either as the distance between models

(e.g. Kullback-Leibler divergence between Gaussian models) or more directly as the distance

between the estimated parameters. The notable examples in this school of thought are model-

ing sets by Gaussian distribution Shakhnarovich et al. [2002]; Arandjelovic et al. [2005] and

more recently with data-driven distributions Harandi et al. [2015b]. Clearly, the performance
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of model-driven methods will deteriorate if the set data is weakly correlated to the model.

To alleviate this difficulty, the topology-driven methods assume data establish a topolog-

ical space and represent image sets by/on nonlinear manifolds Kim et al. [2007a]; Wang

et al. [2008]; Hamm and Lee [2008]; Harandi et al. [2015a]; Wang et al. [2012]; Chen et al.

[2013]. In Kim et al. [2007a] authors propose to learn a discriminant function that maximizes

the canonical correlations of within-class sets while minimizing the canonical correlations of

between-class sets. The concept of principal angles have been successfully utilized in Wang

et al. [2008] for image sets matching through linear subspaces. More involved techniques ex-

ploit the geometry of the space of linear subspaces, i.e. Grassmann manifolds, to match image

sets Harandi et al. [2015a]. Wang et al. [2012] model image sets by their natural second-order

statistics, i.e. covariance matrices. Since nonsingular covariance matrices lie on a Riemannian

manifold, a kernel function is used to explicitly embed the Riemannian structure into a Eu-

clidean space. By exploiting the underlying geometrical structure, topology-driven methods

provide robustness to noise and can operate with a relatively small number of samples per

class.

In line with the success of deep learning architectures, Hayat et al. [2014] learn class-

specific models by an Adaptive Deep Network Template (ADNT). Based on the minimum re-

construction error from the learned models, a majority voting strategy is used for classification.

Furthermore, Lu et al. [2015] propose a multi-manifold deep metric learning approach which

learns multiple sets of nonlinear transformations. Their method nonlinearly maps multiple sets

of image instances into a shared feature subspace, hence more discriminative information is

used for classification.

4.4.2 Geometry of SPSD space

Let us denote the set of SPSD matrices of rank p by Sd
+(p). For example C described in the

previous section lies on Sd
+(p). We note that any A ∈ Sd

+(p) can be decomposed as

A = ZZT = (UR)(UR)T = UR2UT , (4.11)

where Z is a full-rank d× p matrix, U ∈ Sd
p , and R2 ∈ S p

++. Here, Sd
p denotes the Stiefel

manifold, the set of orthogonal matrices, i.e., U ∈ Sd
p iff UTU = Ip.

Eqn (4.11) remains unchanged under the transformation Z → ZO for any matrix O ∈ Op.

Thus, one can deduce that the equivalence relation (U, R2) ≡ (UO, OTR2O) holds. As a

result, the set Sd
+(p) admits a quotient manifold representation Sd

+(p) ∼=
(
Sd

p × S
p
++

)
/Op.



52 Infinite-Dimensional and Rank-Deficient Covariance Descriptors: Two Special Cases

Bonnabel and Sepulchre define the metric on Sd
+(p) based on the sum of infinitesimal dis-

placements on G p
d and S p

++ Bonnabel and Sepulchre [2009]. Let4 and D represent the tangent

vectors in Grassmannian and SPD manifolds, respectively. For Sd
+(p) 3 A = UR2UT and

two pair of tangent vectors (41, D1) and (42, D2) the metric is defined as

〈(41, D1), (42, D2)〉A := 〈41,42〉+ λ〈R−1D1R−1, R−1D2R−1〉 , (4.12)

where 〈·, ·〉 denotes the normal inner product and λ ≥ 0 is a combination weight. The met-

ric defined in Eqn (4.12) induces the following (squared) geodesic distance between A, B ∈
Sd
+(p)

δ2
g(A, B) = ‖Θ‖2

F + λ‖ log(R−1
A R2

BR−1
A )‖2

F . (4.13)

One can understand Eqn (4.13) as the sum of distances on G p
d and S p

++. The first term

refers to the squared geodesic distance between linear subspaces U A and UB while the second

term is the squared geodesic distance between two SPD matrices R2
A and R2

B. Moreover, the

distance is invariant to the transformations that preserve angles (i.e., orthogonal transforma-

tions, scalings, and pseudoinversing) Bonnabel and Sepulchre [2009]. Here, our main motiva-

tion is to benefit from the manifold of SPSD matrices to overcome the limitations of the SPD

manifolds in dealing with rank deficient matrices. As will become clear by our experiments,

the induced geometry is more discriminative than both SPD and Grassmannian manifolds.

4.4.3 Kernels on SPSD Matrices

Though distances on SPSD manifolds can be used to measure similarities between image sets,

the nonlinear structure of curved spaces (SPSD being an instance of) prohibits us from directly

employing more involved machineries (e.g. discriminant analysis, large margin classification).

A prominent way of getting around this difficulty is to make use of valid positive definite

kernels on Riemannian manifolds Jayasumana et al. [2015]; Harandi et al. [2015a]. To define

positive definite (pd) kernels on the SPSD manifold, we first introduce a negative definite (nd)

function on Sd
+(p).

Theorem 5. The function δ2 : Sd
+(p)× Sd

+(p)→ R+ defined as

δ2(A, B) , ‖U AUT
A −UBUT

B‖2
F + λ‖ log(RA)− log(RB)‖2

F

= 2p− 2‖UT
AUB‖2

F + λ‖ log(RA)− log(RB)‖2
F , (4.14)

is negative definite on Sd
+(p) for λ ≥ 0.
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Proof. We recall that a symmetric function ψ : X × X → R on a set X is nd if and only if

∑n
i,j=1 cicjk(xi, xj) ≤ 0 for any n ∈ N, xi ∈ X and ci ∈ R with ∑n

i=1 ci = 0. As shown

in Jayasumana et al. [2015], if f : X → H is a mapping from a set X to an inner product

spaceH, then the function ‖ f (xi)− f (xj)‖2
H is negative definite for ∀xi, xj ∈ X . Here ‖ · ‖H

denotes the norm inH.

Now we note that πp : G p
d → Sym(d), πp(X) = XXT is a mapping from the Grassman-

nian to the space of d× d symmetric matrices, hence the first term of Eqn. (4.14) is negative

definite. Similarly, with log : S p
++ → Sym(p), the second term of Eqn. (4.14) is negative

definite. By invoking the definition of the negative definite kernels, it is easy to see that the

summation of two negative definite kernels is also a negative definite kernel.

Having an nd function at our disposal, we can make use of the following theorem to define

a family of pd kernels on Sd
+(p).

Theorem 6 (Theorem 2.3 in Chapter 3 of Berg et al. [1984]). Let µ be a probability measure

on the half line R+ and 0 <
∫ ∞

0 tdµ(t) < ∞. Let Lµ be the Laplace transform of µ, i.e.

Lµ(s) =
∫ ∞

0 e−tsdµ(t), s ∈ C+. Then, Lµ(β f ) is positive definite for all β > 0 if and only

if f : X ×X → R+ is negative definite.

For example, by choosing µ to be the Dirac function at t = 1, we obtain the RBF kernel

on Sd
+(p) as follows

kR(A, B) , exp
(
−β
(

λ‖ log(RA)−log(RB)‖2
F−2‖UT

AUB‖2
F

))
.

We notice that one could arrive to the same conclusion, i.e. kR(·, ·) being pd, by observing

that it is indeed the product of two pd kernels. However, our approach here is more principled

and can be used to generate other types of pd kernels on Sd
+(p) by properly changing the

measure µ in Thm.6.

Another widely used kernel in the Euclidean spaces is the Laplace kernel defined as k(x, y) =

exp(−β‖x− y‖). To obtain the Laplace kernel on the Sd
+(p), we make use of the following

theorem for nd kernels.

Theorem 7 (Corollary 2.10 in Chapter 3 of Berg et al. [1984]). If f : X ×X → R is negative

definite and satisfies f (x, x) = 0 then so is ψα for 0 < α < 1

As a result both δ(·, ·) =
√

δ2(·, ·) is nd by choosing α = 1/2 in Theorem 7 and hence

the form of exp(−βδ(·, ·)) is pd.
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Table 4.2: The proposed SPSD kernels.

Kernel Equation

Linear kl(A, B) = ‖UT
AUB‖2

F + λ Tr
(

log(RA) log(RB)
)

Polynomial kp(A, B) =
(

β + ‖UT
AUB‖2

F + λ Tr
(

log(RA) log(RB)
))α

Laplace kL(A, B) = exp
(
−β
√

λ‖ log(RA)−log(RB)‖2
F−2‖UT

AUB‖2
F

)
RBF kR(A, B) = exp

(
−β
(

λ‖ log(RA)−log(RB)‖2
F−2‖UT

AUB‖2
F

))

Before concluding this part, we also introduce the linear and polynomial kernels on Sd
+(p).

The linear kernel kl(A, B) = ‖UT
AUB‖2

F + λ Tr
(

log(RA) log(RB)
)

is interesting as it is a

parameter-less kernel (discarding λ which defines the form of the linear combination of the

two). To show that kl(·, ·) is pd, we note that kl(·, ·) is the summation of two pd kernels

defined on the space of symmetric matrices Hamm and Lee [2008]; Jayasumana et al. [2015].

This will lead us to define the polynomial kernels as

kp(A, B) ,
(

β + ‖UT
AUB‖2

F + λ Tr
(

log(RA) log(RB)
))α

.

Table 4.2 summarizes all the aforementioned SPSD kernels.

4.4.4 Experiments

We present experiments on three benchmark image set classification tasks. Given the diversity

of the studied problems, we deem to describe images differently based on the task in hand.

However, please note that our goal is not to identify the best off the shelf image descriptors for

each task.

In our experiments, we rely on two classifiers: 1. a simple Nearest Neighbor (NN) classifier

to demonstrate the benefits of the SPSD manifolds in comparison to SPD and Grassmann

manifolds and 2. an NN classifier on top of kernel Discriminant Analysis (kDA) to evaluate the

positive definite kernels introduced in §4.4.3. Different algorithms tested in our experiments

are referred to as

NN: NN classifier using the geodesic distance.

kDALinear: kDA classifier with linear kernel.

kDAPolynomial: kDA classifier with polynomial kernel.
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Figure 4.4: Examples of the Cambridge hand gesture dataset Kim et al. [2007b].

kDALaplace: kDA classifier with Laplace kernel.

kDARBF: kDA classifier with RBF kernel.

Before delving into details of each experiment, we note that the kernel parameters are found

by cross-validating over training sets. As far as the sensitivity to the rank of matrices and the

parameter λ are considered, we dedicate a separate section (§4.4.4.4) before concluding this

part.

4.4.4.1 Hand Gesture Recognition

In our first experiment, we tackled the task of hand gesture classification from image se-

quences. To this end, we used the Cambridge hand gesture dataset Kim et al. [2007b] which

contains 900 image sets of 9 gesture classes with large intra-class variations. The gestures are

defined by 3 primitive hand shapes and 3 primitive motions (see Fig. 4.4 for examples). There-

fore, the target task for this data set is to classify different shapes as well as different motions

at a time.

We followed the experimental protocol suggested by Mahmood et al. [2014] in which 100

image sets of each class are divided into two parts, 81-100 used as train set and 1-80 as test

set. For this dataset we made use of concatenated HOG features of 2× 2 blocks of each frame.

The state-of-the-art on this dataset Mahmood et al. [2014] obtains the accuracy score of 83.1%

using an ensemble of 9 spectral classifiers.

Table 4.3 shows that all the proposed methods comfortably outperform the state-of-the-art

algorithms. A kDA classifier when the kernel is RBF over the SPSD manifold significantly

outperforms the state-of-the-art ensemble of classifiers Mahmood et al. [2014]. The difference

is 8 percentage points.
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Figure 4.5: Examples of the YouTube celebrities dataset Kim et al. [2008].

Figure 4.6: Examples of the Maryland dynamic scene dataset Shroff et al. [2010].

Table 4.3: Recognition scores for the Cambridge hand gesture dataset Kim et al. [2007b].

SANP 22.5 Hu et al. [2011]
CDL 73.4 Wang et al. [2012]
SSSC 83.1 Mahmood et al. [2014]

NN 87.4
kDARBF 91.1
kDALaplace 89.3
kDAPolynomial 90.0
kDALinear 90.0

We conducted extra experiments using the regularized SPD matrices with the same clas-

sifiers. The recognition accuracies are 82.5%, 87.5%, 86.7%, 87.8%, and 78.2% using NN,

kDARBF, kDALaplace, kDAPolynomial , and kDALinear, respectively (see Li et al. [2013a] for

more details about the kernels). Please note that all the utilized kernels are SPD. This clearly

shows that the proposed geometry is significantly superior to that of SPD manifolds. Since the

same trend is observed, we confine ourselves to report only the results of SPSD matrices for

other datasets.
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Table 4.4: Recognition scores for the YouTube celebrities Kim et al. [2008].

SANP 65.0 Hu et al. [2011]
CDL 70.1 Wang et al. [2012]
ADNT 71.4 Hayat et al. [2014]

NN 65.3
kDARBF 72.8
kDALaplace 71.8
kDAPolynomial 70.6
kDALinear 70.4

4.4.4.2 Video-Based Face Recognition

We performed another experiment to classify human faces in videos. To this end, we consid-

ered the YouTube celebrity dataset Kim et al. [2008] which contains 1910 videos of 47 people

(see Fig. 4.5 for a few examples). The large diversity of poses, illumination, and facial expres-

sions in addition to high compression ratio of face images have made it the most challenging

dataset for image set classification based face recognition.

For our evaluation, we followed the standard five-fold cross validation protocol used in Hu

et al. [2011]; Wang et al. [2012]; Hayat et al. [2014] which divides the whole dataset equally

(with minimum overlap) into five folds with 9 videos per subject in each fold. Three of the

videos were randomly selected for training, while the remaining six were used for testing. We

generated linear subspaces of order 6 by grouping features of individual frames.

From each video, we extracted the face regions using the tracker of Ross et al. [2008].

We considered Local Binary Patterns Ojala et al. [2002] as our feature. Each face region was

divided into 2 × 2 distinct non-overlapping blocks and the features were extracted for each

patch and concatenated to form the final frame descriptors. Therefore, each descriptor belongs

to S6
++ and G6

232 for the covariance descriptors and linear subspaces.

Table 4.4 summarizes the average recognition rates of all the studied methods. Several

conclusion can be drawn here. First of all, we note that in all cases the new SPSD manifold

achieves descent accuracy scores. Furthermore, a single RBF kernel in the SPSD manifold

comfortably outperform all the state-of-the-art algorithms. We achieve average accuracy score

of 72.8% which outperforms the closest competitor by 1.4% percentage points.

4.4.4.3 Dynamic Scene Recognition

Finally, we considered the task of scene recognition from the videos using the Maryland "In-

The-Wild"dataset Shroff et al. [2010] (see Fig. Kim et al. [2007b] for example classes). This
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Table 4.5: Recognition accuracies for the Maryland dataset Shroff et al. [2010].

SFA 60.0 Theriault et al. [2013]
CSO 67.7 Feichtenhofer et al. [2013]
BoSE 77.7 Feichtenhofer et al. [2014]

NN 83.1
kDARBF 88.5
kDALaplace 82.3
kDAPolynomial 90.0
kDALinear 89.2

dataset consists of 130 videos of natural scenes spanning 13 categories (e.g. Avalanche, For-

est Fire, Waves) with 10 videos per class. The videos are collected from Internet-based video

hosting sites, such as YouTube. Significant camera motions, differences in appearance, frame

rate, scale, viewpoint, scene cuts, and illumination conditions exist in this dataset. A leave-

one-video-out experimental protocol is used for consistency with previous evaluation in Fe-

ichtenhofer et al. [2014].

We made use of the FC7 features of Convolutional Neural Network (CNN) of Zhou et al.

[2014]. The network is trained on the Places dataset Zhou et al. [2014] with 205 scene cate-

gories and 2,5 million images with a category label. Here, we extract the 4096 FC7 feature of

each frame. We then reduce the dimension of the feature to 400 using Principal Component

Analysis.

Results are reported in Table 4.5. The table is self explanatory. To the best of our knowl-

edge, 77.7% classification accuracy by the recent Bag of Spatiotemporal Energy (BoSE) method

of Feichtenhofer et al. [2014] is the highest accuracy score reported on this dataset. Our meth-

ods outperform the BoSE by a very large support.

4.4.4.4 Sensitivity to Rank and Weighting Parameter

We also studied the sensitivity of our proposed approach to the chosen subspace order as well

as the value of λ. Figure 4.7 shows the accuracy against subspace order for the Cambridge

hand gesture dataset using the pixel intensities as features and NN as classifier (i.e. using

Eqn 4.13). As depicted in the figure for all the studied subspace order the accuracy of NN on

the Grassmannian manifold is inferior to the SPSD cases.

More importantly, we observed that as the order of the subspaces increases the differences

between the accuracy obtained on the Grassmannian drops significantly. In other words, most

values of the parameter λ provides a consistently stable performance over a range of p values

even if the number of subspaces varies considerably. This clearly justifies the use of SPSD
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Figure 4.7: Accuracy against subspace order for the Cambridge hand gesture dataset. As visible
inclusion of the SPD term significantly improves upon the use of Grassmannian only.

matrices.

4.5 Conclusions

In this chapter, we studied two special types of RCovDs, namely infinite-dimensional RCovDs

and SPSD matrices which readily do not conform the usual development for SPD matrices.

Firstly, we made use of random Fourier feature and the Nyström method to compute two ap-

proximations to infinite-dimensional RCovDs. Our experimental evaluation has demonstrated

that the proposed RCovDs significantly outperform the low-dimensional ones on image clas-

sification task. More importantly, our RCovDs provide a framework in which the well-known

Riemannian geometry of the SPD matrices can be taken into account.

Secondly, inspired by the recent success of image set representation as points on nonlinear

Riemannian manifolds, we proposed SPSD matrices as descriptors for image set classification.

The challenge lies in the fact that to measure the similarities, the usual metrics on the manifold

of SPD matrices, such as the AIRM, are not valid due to rank-deficiency of the SPSD matrices.

Hence, our main motivation to benefit from the SPSD matrices is to overcome the limitations

of the SPD manifolds (rank deficiency being the most important one). We made use of a metric

that can be decomposed as sum of infinitesimal distances on the Grassmannian manifold and

the manifold of SPD matrices. Since our formulation enables us to utilize any distances on

the two manifolds, we can integrate valid kernels for the image set classification task. A
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rigorous set of successful experiments on several challenging applications including gesture

classification, video-based face recognition and dynamic scene recognition demonstrated the

advantages of our method.

In the next chapter, we study how Riemannian optimization techniques assist us in finding

solutions for metric learning.



Chapter 5

Metric Learning, A Riemannian

Manifold Perspective

5.1 Overview

In this chapter, we first devise a kernel version of the recently introduced Keep It Simple and

Straightforward MEtric learning (KISSME) Koestinger et al. [2012] method, hence adding a

novel dimension to its applicability in scenarios where input data is non-linearly distributed.

To this end, we make use of the infinite dimensional covariance matrices and show how a ma-

trix in a Reproducing Kernel Hilbert Space (RKHS) can be projected onto the positive cone

efficiently. In particular, we propose two techniques towards projecting on the positive cone in

an RKHS. The first method, though approximating the solution, enjoys a closed-form and ana-

lytic formulation. The second solution is more accurate and requires Riemannian optimization

techniques. Nevertheless, both solutions can scale up very well as our empirical evaluations

suggest. For the sake of completeness, we also employ the Nyström method to approximate

an RKHS before learning a metric. Our experiments evidence that, compared to the state-of-

the-art metric learning algorithms, working directly in RKHS, leads to more robust and better

performances Faraki et al. [2017b].

Furthermore, we devise a unified formulation for joint dimensionality reduction and metric

learning based on the KISSME algorithm. Despite its attractive properties, the performance

of the KISSME method is greatly dependent on Principal Component Analysis (PCA) as a

preprocessing step. This dependency can lead to difficulties, e.g., when the dimensionality is

not meticulously set. Our joint formulation is expressed as an optimization problem on the

Grassmann manifold, hence enjoys properties of Riemannian optimization techniques.

Finally, following the success of deep learning in recent years, we also devise end-to-

end learning of a generic deep network for metric learning using our derivation [Faraki et al.,

61
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2017a].

5.2 Introduction

In computer vision, determining a suitable metric plays a pivotal role in various applications

such as person reidentification Xiong et al. [2014]; Chen et al. [2015]; Zheng et al. [2015b];

Cheng et al. [2011], face and kinship verification Koestinger et al. [2012]; Li et al. [2013b];

Lu et al. [2014]; Guillaumin et al. [2009]; Wolf et al. [2011], and image retrieval Song et al.

[2016]; Hoi et al. [2006], to name a few. The commonly used Euclidean distance assumes that

all features are of equal importance, which is almost never the case in practice.

On a related note, metric learning algorithms Weinberger et al. [2005]; Davis et al. [2007];

Koestinger et al. [2012]; Harandi et al. [2017] are of practical interest when learning from large

number of categories (with limited training samples per category) is deemed, if the machinery

is meant to deal with unseen classes (e.g., retrieval), or if weaker forms of supervision are

considered. In such scenarios, conventional classification approaches are either not applicable

or may fail miserably.

The KISSME algorithm Koestinger et al. [2012] is agnostic to the class labels and learns

a metric purely from a set of equivalence constraints (similar/dissimilar pairs). Furthermore,

the algorithm scales to large scale problems, making it a suitable -if not perfect- match for

the aforementioned problems. To be more specific, the Mahalanobis distance is learned by

one sweep over the data with the dominant computation being an eigenvalue decomposition.

Given its attractiveness, we base our contributions on the KISSME method. We will discuss

KISSME in detail in §5.4, but before that we review some notable examples of metric learning

techniques below.

5.3 Related Work

We review some notable examples of conventional and deep metric learning techniques here.

We start by two studies in the restricted mode and follow it up by a classical method devised

for the unrestricted case. Note that that algorithms in restricted metric learning scenario do not

have access to the class labels of the samples. These algorithms can also work in the unre-

stricted scenario while the opposite is not often the case. This makes the restricted algorithms

more appealing as they can address a broader range of problems.

Mahalanobis Metric for Clustering (MMC) Xing et al. [2003] aims to minimize sum of
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distances over similar pairs while ensuring dissimilar pairs are far apart. The problem is for-

mulated as an iterative gradient descent algorithm where at each iteration the obtained solution

is projected back to the set of Positive Semi-Definite (PSD) matrices to ensure the metric is

proper. Projection onto the PSD cone requires eigenvalue decomposition, making MMC com-

putationally expensive when dealing with high-dimensional data.

Pairwise Constrained Component Analysis (PCCA) Mignon and Jurie [2012] learns a

transformation to project similar pairs inside a ball while dissimilar pairs are pushed away.

Optimization is performed by making use of the gradient descent method.

A goal common to the state-of-the-art metric learning techniques is to make use of discrim-

inative information existing in training data. Neighborhood Component Analysis (NCA) Gold-

berger et al. [2004] learns a Mahalanobis distance to improve k-Nearest Neighbor (kNN) clas-

sification score in a supervised manner. To this end, NCA minimizes the expected value of a

stochastic variant of the kNN error. The classification model is parameter free, without any

assumptions about the shape of the class distributions or the boundaries between them, which

makes NCA attractive and easy to use.

Large Margin Nearest Neighbor (LMNN), learns a global linear transformation of labeled

input data to improve the kNN classification accuracy Weinberger and Saul [2009]. In doing

so, the learned transformation (or equivalently the metric) is deemed to unite the k-nearest

neighbors of each point sharing the same label while separating instances from different classes

by a margin. Learning the linear transformation is formulated as a semi-definite programming

problem and solved by iterating between a gradient descent step followed by projecting the

solution onto the positive semi-definite cone.

Davis et al., leverage on the connection between the multivariate Gaussian distributions and

the Mahalanobis metrics in their Information-Theoretic Metric Learning (ITML) method Davis

et al. [2007]. The method seeks a metric to enforce the distance between similar pairs to

be below the threshold δl while making the distance between dissimilar pairs exceeding the

threshold δu with δl < δu. In ITML, the proximity between two Mahalanobis metrics is

measured by the Kullback-Leibler divergence of their corresponding distributions.

Guillaumin et al. [2009] propose Logistic Discriminant Metric Learning (LDML) to tackle

the problem of face verification. The key idea is to find a metric to make the distances between

similar pairs smaller than the distances between dissimilar pairs. Thereby, a probabilistic es-

timate depicting whether a pair of face images belong to the same person or not is obtained

using the Mahalanobis distance along a linear logistic discriminant model. The Mahalanobis

metric is obtained by maximizing the log-likelihood of the logistic model.
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In recent years, deep metric learning has received growing attention, following the trend

of deep Convolutional Neural Networks (CNN) in solving large-scale classification prob-

lems Krizhevsky et al. [2012].

5.3.1 Metric Learning and Deep Nets

Similarity/distance metric learning using deep nets originates from the advent of Siamese net-

works Chopra et al. [2005]. In recent years, deep metric learning has received growing at-

tention, following the trend of deep CNNs in solving large-scale classification problems. For

example, in the spirit of PCCA, a two layer discriminative network for face verification is

proposed in Hu et al. [2014]. This method is further extended in Lu et al. [2017] by collabo-

ratively learning multiple neural networks. Another work in multiple metric learning is Duan

et al. [2017] where multiple holistic and local subspaces are learned using Auto Encoders (AE).

In order to train the local networks, training samples are first assigned to their nearest AE based

on their reconstruction losses. Sun et al. [2014] uses an ensemble of networks, each operating

on a different face patch for face verification. The networks are trained by making use of a

combination of classification and verification cost functions. The cross-entropy loss is used for

the classification loss. As for the verification loss, cost function encodes an l2-margin between

face images.

Very recent works in deep metric learning include the work of Hoffer and Ailon [2015]

and Schroff et al. [2015] in which an LMNN based triplet loss layer is used to direct CNN

parameter learning. Song et al. [2016] shows careful construction of batches such as including

hard triplets during training, leads to better clustering and retrieval qualities. Huang et al.

[2016] proposes a formulation to jointly perform similarity learning and hard sample selection.

Finally, Hermans et al. [2017] shows promising results for the task of person re-identification

using a variant of triplet loss function (see Eq. (5.31)).

Song et al. [2016] discuss drawbacks of pairwise constraints and triplets when combined

with stochastic gradient descent updates in deep nets. In short, given the small size of batches,

the full potential of pairwise or triplet information cannot be exploited in deep nets. As sug-

gested in Song et al. [2016], careful construction of batches by the concept of lifted structured

feature embedding, i.e., including hard triplets during training, leads to significant improve-

ment in accuracy.
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5.4 Background

We have already defined the notion of metric and the induced space in § 2. Let X be the set

and d : X ×X → R+ the distance function. Choosing X to be the D-dimensional Euclidean

space, the class of Mahalanobis distances can be defined as

dM(x, y) =
√
(x− y)T M(x− y) , (5.1)

with M ∈ SD
++.

The goal of Mahalanobis Metric Learning (MML) is to determine M such that dM(·, ·)
endows certain useful properties. Let

{
xi, yi

}n
i=1, xi, yi ∈ RD be a set of n training pairs.

Furthermore, let li ∈ {−1, 1} denote the label of the i-th pair with li = 1 indicating that the

corresponding pair is similar and li = −1 otherwise.

In KISSME algorithm, which our methods are built upon, a dissimilarity hypothesis is

defined as

δ(xi, yi) = log

 1√
2π|Σd|

exp
(
− 1

2 (xi − yi)
TΣ−1

d (xi − yi)
)

1√
2π|Σs|

exp
(
− 1

2 (xi − yi)
TΣ−1

s (xi − yi)
)
 , (5.2)

where

Σd =
1

#(li = −1) ∑
i,li=−1

(xi − yi)(xi − yi)
T, (5.3)

Σs =
1

#(li = 1) ∑
i,li=1

(xi − yi)(xi − yi)
T . (5.4)

where # denotes the number of samples.

Having a large δ(xi, yi) indicates that xi and yi are dissimilar, and vice-versa. With this

hypothesis, the Mahalanobis matrix is obtained as M = Proj(Σ−1
s −Σ−1

d ) with Proj(·) denot-

ing projection to the cone of positive definite matrices. Such a projection is required to have a

valid distance. In KISSME, the projection is obtained by clipping the spectrum of Σ−1
s − Σ−1

d .

That is given the eigen-decomposition of Σ−1
s − Σ−1

d as UDUT then M = UD+UT where

D+ = diag(max(di, ε)) with D = diag(di) and ε being a very small positive number.



66 Metric Learning, A Riemannian Manifold Perspective

5.5 KISSME in Hilbert Spaces

On the downside, the KISSME algorithm is designed to work with explicit and vectorized

data. As such, the algorithm is unable to learn efficiently from non-linear data or if data is

not in vector form (e.g., manifold-value data). This is also evidenced by some recent studies

(e.g., Xiong et al. [2014]), stating that non-linearity associated with high-dimensional data

cannot be captured by the KISSME algorithm. As a result, the algorithm falls short compared

to the methods that are efficiently benefiting from such information. In this part, we provide

solutions to both limitations in a principal way and present techniques to kernelize KISSME,

making it applicable to a wider set of problems.

To kernelize KISSME algorithm while preserving its unique features, we make use of the

recently introduced infinite dimensional covariance matrices Harandi et al. [2014a]; Quang

et al. [2014]; Faraki et al. [2015a] and show how a matrix in an RKHS can be projected onto

the positive cone efficiently. In particular, we propose two techniques towards projecting onto

the positive cone in an RKHS. The first method, albeit approximating the solution, enjoys a

closed-form and analytic formulation. The second solution is more accurate and requires Rie-

mannian optimization techniques. Nevertheless, both solutions can scale up very well as our

empirical evaluations suggest. Furthermore, to have the full package, we employ the Nyström

method Baker [1977] to approximate an RKHS and formulate the Nyström KISSME accord-

ingly.

In our experiments, we demonstrate the benefits of the presented kernelized KISSME ap-

proach over existing metric learning schemes on the task of person reidentification using the

iLIDS Zheng et al. [2009] and the CAVIAR Cheng et al. [2011] datasets and kinship verifica-

tion from unconstrained face images using the KinFace-I and the KinFace-II datasets Lu et al.

[2014]. Before delving into more details, we emphasize that our method learns a metric purely

from the equivalence constraints (similar/dissimilar pairs) and does not use class-labels as re-

quired by some other learning techniques (e.g., Song et al. [2016]; Ding et al. [2015]; Xiong

et al. [2014]).

We now describe our approach to learning a Mahalanobis metric MH in an RKHSH using

the KISSME algorithm. Let X and k : X ×X → R be a set and a (positive definite) pd kernel

defined on X , respectively. According to the Mercer theorem, a mapping φ : X → H to an

RKHS H exists for any pd kernel. Our aim in this section is to derive a Mahalanobis distance

dH : H×H → R+ in the feature space H with certain properties. Suppose {(xi, yi, li)}n
i=1

with xi, yi ∈ X and li ∈ {−1, 1} be a set of n training samples. Given a pd kernel k :
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X ×X → R the Mahalanobis distance inH can be written as

dH(xi, yi) =

√(
φ(xi)− φ(yi)

)T MH
(
φ(xi)− φ(yi)

)
. (5.5)

To learn MH, we define the likelihood ratio test of the pair (xi, yi) as

δH(xi, yi) = (5.6)

log

 1√
2π|ΣH,d|

exp
(
− 1

2

(
φ(xi)− φ(yi)

)TΣ−1
H,d

(
φ(xi)− φ(yi)

))
1√

2π|ΣH,s|
exp

(
− 1

2

(
φ(xi)− φ(yi)

)TΣ−1
H,s

(
φ(xi)− φ(yi)

))
 .

Here, the covariance matrices are

ΣH,d =
1

#(li = −1) ∑
i,li=−1

(
φ(xi)− φ(yi)

)(
φ(xi)− φ(yi)

)T,

ΣH,s =
1

#(li = 1) ∑
i,li=1

(
φ(xi)− φ(yi)

)(
φ(xi)− φ(yi)

)T . (5.7)

With the same line of reasoning as Koestinger et al. [2012], the Mahalanobis form that

maximizes δH(·, ·) over the training samples is obtained by choosing MH = ProjH(Σ
−1
H,s −

Σ−1
H,d). As such, we need to answer the following questions to extend the KISSME algorithm

to work inH:

1. How Σ−1
H,s and Σ−1

H,d can be obtained inH?

2. How the projection ProjH(·) can be defined efficiently inH?

3. Having answers to the previous questions at our disposal, how dH(·, ·) can be obtained

efficientlyH?

Below, we address these questions one-by-one.

5.5.1 Obtaining Σ−1
H,s and Σ−1

H,d

In essence, obtaining Σ−1
H,s and Σ−1

H,d follow the same procedure. For the sake of simplicity,

we describe how in general the inverse of a covariance matrix, namely Σ−1
H in the RKHS H,

can be obtained. In doing so, we start with the familiar Euclidean space. Given a set of pairs
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{(xi, yi)}n
i=1, we have

Σ =
1
n ∑

i
(xi − yi)(xi − yi)

T = ZJJTZT , (5.8)

with Z =
[
x1, x2, · · · , xn, y1, y2, · · · , yn

]
and

J JT =
1
n

 In −In

−In In

 .

Accordingly, the covariance matrix ΣH in the RKHS H with dimensionality |H| can be

written as

ΣH = ΦZ J JTΦT
Z, (5.9)

with ΦZ =
[
φ(x1), φ(x2), · · · , φ(xn), φ(y1), φ(y2), · · · , φ(yn)

]
.

The difficulty in obtaining Σ−1
H lies in the fact that for universal kernels (e.g., Gaussian

kernel) the dimensionality of H → ∞. With limited data, ΣH is positive semi-definite and

hence Σ−1
H does not theoretically exist. As such, we need to preserve the positive eigenvalues

and the associated eigenvectors of ΣH and regularize the zero ones. This can be understood as

the best approximation to ΣH given the set Z.

In particular, let KZ ∈ R2n×2n be the kernel matrix of Z, i.e.,

[KZ]i,j =


k(xi, xj), i, j ≤ n

k(yi, yj), i, j > n

k(xi, yj), otherwise

Let the SVD decomposition of JTΦT
ZΦZ J = JTKZ J be V ZΛZV T

Z. Then, we make use

of the relationship between the eigenvalues and eigenvectors of the product AAT and AT A

where A = ΦZ J. The regularized estimate of ΣH then can be written Harandi et al. [2014a]

Σ̂H = ΦZW ZW T
ZΦT

Z + ρIH , (5.10)

where W Z = JV Z
(
I2n − ρΛ−1

Z
)0.5 with ρ being a positive regularizor.

To obtain Σ̂−1
H , we make use of the Woodbury matrix identity Golub and Van Loan [2012]
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to arrive at

Σ̂−1
H =

(
ΦZW ZW T

ZΦT
Z + ρIH

)−1
=

1
ρ

IH −
1
ρ

ΦZW ZΛ−1
Z W T

ZΦT
Z . (5.11)

This lets us answer the first question, i.e., obtaining Σ−1
H,s − Σ−1

H,d as

Σ̂−1
s,H − Σ̂−1

d,H =
1
ρ

ΦZdW Zd Λ−1
Zd

W T
Zd

ΦT
Zd
− 1

ρ
ΦZsW Zs Λ

−1
Zs

W T
Zs

ΦT
Zs

. (5.12)

5.5.2 Projection onto the Positive Cone in H

We note that the form of Σ̂−1
s,H − Σ̂−1

d,H cannot be directly used to define a Mahalanobis distance

inH. This is because the difference of two positive definite matrices is not necessarily positive

definite, violating the very basic definition of a metric given in §5.4.

In this part, we propose two methods to project Σ̂−1
s,H − Σ̂−1

d,H onto the positive cone in H.

In the first method, though being an approximation, the projection can be obtained in closed-

form. The second method relies on Riemannian optimization techniques and is an iterative

scheme. Our experiments suggest that the solution obtained by the second method is more

reliable. As such, we recommend to use the first solution only if the burden of Riemannian

optimization techniques is a concern.

Our main idea here is to define an implicit form of a positive definite matrix and then min-

imize a measure of similarity between the implicit form and Σ̂−1
s,H − Σ̂−1

d,H. More specifically,

with C ∈ Sn
++ and trn denoting a set of n training vectors, we propose to solve the following

problem as a means of projection onto the cone of positive definite matrices inH

arg min
C�0
L(C) ,

∥∥∥ΦtrnCΦT
trn + ΦZs AsΦT

Zs
−ΦZd AdΦT

Zd

∥∥∥2

F
, (5.13)

where As = W Zs Λ
−1
Zs

W T
Zs

and Ad = W Zd Λ−1
Zd

W T
Zd

.

Expanding the Frobenious norm and considering only the terms that include C, we get

L(C) =Tr
(
KtrnCKtrnC

)
+ 2 Tr

(
KZs,trnCKT

Zs,trn As
)

(5.14)

− 2 Tr
(
KZd,trnCKT

Zd,trn Ad
)
+ const .
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5.5.2.1 First Solution (The Approximation)

Without considering the constraint C � 0, a closed-form solution can be obtained by setting

as

∇C
(
L(C)

)
= 0 (5.15)

⇒ 2KtrnCKtrn + 2KT
Zs,trn AsKZs,trn − 2KT

Zd,trn AdKZd,trn = 0

⇒ C∗ = K−1
trn

(
KT

Zd,trn AdKZd,trn − KT
Zs,trn AsKZs,trn

)
K−1

trn .

Unlike Σ̂−1
s,H − Σ̂−1

d,H, which is implicit, C∗ has an explicit form. As such, projecting onto

the set of positive definite matrices can be attained by simply applying the Proj(·) operator

(see §5.4). We note that the proposed two step approach (minimizing followed by projection)

does not necessarily provide the closest point inside the positive cone to Σ̂−1
s,H − Σ̂−1

d,H, hence

the name approximation. In our experiments, we refer to this method as CF-K2ISSME .

5.5.2.2 Second Solution (The Riemannian Approach)

Classical optimization methods generally turn a constrained optimization problem into a se-

quence of unconstrained problems for which unconstrained techniques can be applied. In

contrast, recent advances in optimization on Riemannian manifolds offer an alternative if the

constraints can be modeled by a Riemannian structure. This is indeed the case here.

Consider a constrained optimization problem in the form of minimizing f (x) with the

constraint that x should lie on a Riemannian manifold M (think of a Riemannian manifold

as a smooth surface embedded in some Euclidean space). This problem can be understood as

an unconstrained problem in the form f : M→ R. Optimization techniques on Riemannian

manifolds (e.g., Riemannian Gradient Descent (RGD)) enjoy several unique properties (e.g.,

convergence, smooth behavior) that make them competent alternatives to classical techniques.

To apply RGD on f : M → R, one ultimately needs to have the gradient of f at x,

i.e., gradx f ∈ TxM with TxM denoting the tangent space of M at x. For the problem

of our interest, i.e., minimizing L(C) while satisfying C � 0, the Riemannian structure that

describes the constraint is Sn
++, e.g. the manifold of SPD matrices. For a smooth function

f : Sn
++ → R, the gradient gradC f ∈ TCSn

++ is given by

gradC f = Csym
(
∇C( f )

)
C , (5.16)
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Figure 5.1: Convergence behavior of our R-K2ISSME algorithm.

where ∇C(·) is the Euclidean gradient w.r.t C and

sym(X) =
X + XT

2
.

We have already computed∇C(·) in the previous section, hence applying RGD is straight-

forward. In our experiments, we refer to this method as R-K2ISSME . We use the implemen-

tation provided by the Manopt toolbox Boumal et al. [2014] to determine C.

Figure 5.1 illustrates the convergence behavior of our R-K2ISSME algorithm using the

iLIDS dataset Zheng et al. [2009]. In all our experiments, we observed that the algorithm typ-

ically converges in less than 30 iterations, thus making it scalable to learning large metrics. To

have a complete picture, we report the computational load of our proposal for our last exper-

iment in §5.5.5. Averaging over 10 splits on a quad-core machine using Matlab, computing

the kernel matrix for all samples takes about 110 seconds. Computing the metric matrix in the

CF-K2ISSME takes 0.7 seconds, making it the preferred technique when computational cost is

important. Finally, performing 30 iterations in the R-K2ISSME takes near 45 seconds.
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5.5.3 Efficient Computation of the Mahalanobis Distances in H

Once C is obtained either by the first method or the second solution, the Mahalanobis distance

inH can be obtained as

dH(p, q) =
√(

φ(p)− φ(q)
)TΦtrnCΦT

trn
(
φ(p)− φ(q)

)
(5.17)

=
√

kp,trnCkT
p,trn − 2kp,trnCkT

q,trn + kq,trnCkT
q,trn .

which answers our third question.

5.5.4 The Nyström Solution

In the previous parts, we showed how the KISSME algorithm can be kernelized. Very related

to our goal in this part is the concept of approximating the feature map φ of a pd kernel. For

specific kernels (e.g., the Gaussian kernel), such approximations are known Vedaldi and Zis-

serman [2012]. Hence, one can obtain a vectorized representation of the kernel space towards

kernelizing the KISSME algorithm.

For more complicated kernel functions, one can employ the Nyström method to kernelize

KISSME. The Nyström method is a data-driven approach to estimate the RKHS induced by a

kernel. Briefly, let D = {ti}M
i=1 be a collection of M training samples. A rank D approxima-

tion to K = [k(ti, t j)]M×M can be obtained using SVD as K ' VΣV T. Here, Σ ∈ RD×D

is a diagonal matrix keeping the top D eigenvalues of K and V ∈ RM×D is a column matrix

storing the associated top eigenvectors. Having the low-rank representation at our disposal, a

D-dimensional approximation to φ(x) is given by

φ̂(x) = Σ−1/2V
(

k(x, t1), · · · , k(x, tM)
)T

. (5.18)

We will call this solution, i.e., obtaining φ̂(·) followed by applying the original KISSME

algorithm, the Nyström-KISSME method.

5.5.5 Experiments

In this section, we compare our proposed methods with several state-of-the-art metric learning

techniques. In particular, we evaluate the performance of our R-K2ISSME , CF-K2ISSME ,

and Nyström-KISSME against LMNN Weinberger and Saul [2009], ITML Davis et al. [2007],

LDML Guillaumin et al. [2009] and KISSME Koestinger et al. [2012]. As another indica-
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Figure 5.2: From left to right four sample images of the iLIDS Zheng et al. [2009] and the
CAVIAR Cheng et al. [2011] datasets are shown, respectively.

Table 5.1: CMC at rank r on the iLIDS dataset with p = 60 test individuals.
Method r = 1 r = 5 r = 10 r = 20

kLFDA-χ2 36.5% 64.1% 76.5% 88.5%
MFA-χ2 32.6% 58.5% 71.5% 84.5%
LMNN 32.6% 56.2% 68.9% 83.0%
ITML 29.5% 50.3% 62.6% 76.4%
LDML 27.8% 53.2% 67.0% 82.5%

KISSME 30.3% 54.8% 68.3% 83.6%
Nyström-KISSME 33.1% 60.6% 73.2% 86.2%

CF-K2ISSME 37.8% 64.3% 76.5% 88.7%
R-K2ISSME 38.1% 65.0% 78.2% 89.4%

tor, we also measure our performance to dataset-specific baselines. For all the baselines, we

carefully tune their parameters and report their maximum accuracies here.

In all the experiments, we follow the so-called restricted protocol, where only the set of

similar/dissimilar pairs is available during training. Furthermore, we utilize the parameter-free

Chi-squared kernel depicted below in R-K2ISSME , CF-K2ISSME and Nyström-KISSME .

kχ2(x, y) = ∑
i

2xiyi
xi + yi

. (5.19)

5.5.5.1 Person Reidentification

As our first experiment, we tackled the task of person reidentification using two widely used

datasets, namely iLIDS Zheng et al. [2009] and CAVIAR Cheng et al. [2011]. The iLIDS

dataset contains images of 119 pedestrians captured by 8 cameras with different view points in

an airport. Each individual has 2 to 8 images, and the dataset exhibits severe occlusions caused

by people and their luggage. The CAVIAR4REID (CAVIAR) dataset includes 1220 images

of 72 different persons captured from two different cameras in an indoor shopping mall. The
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number of images per individual varies from 10 to 20. Sample images of both datasets are

shown in Fig. 5.2.

In our experiments, we followed the standard single-shot protocol. That is, the dataset was

randomly partitioned into two exclusive subset of individuals, with p individuals constituting

the test set and the remaining ones forming the training data. The random partitioning was re-

peated 10 times. In each partition, one image from each individual in the test set was randomly

selected as the reference image and the rest of the images were used as query images. This

process was repeated 20 times.

As for features, we used the histogram based descriptors provided by Xiong et al. [2014]

for fair comparisons1. More specifically, each image in the dataset is described by 16-bin

histogram of RGB, YUV and HSV color channels, as well as texture histograms based on the

Local Binary Patterns (LBP) Ojala et al. [2002] extracted from 6 non-overlapping horizontal

bands. This leads to a 2580 dimensional descriptor for each image.

Aside from the aforementioned MML baselines, we compare our proposed algorithms with

the state-of-the-art kernel Local Fisher Discriminant Analysis (kLFDA) Xiong et al. [2014]

and Marginal Fisher Analysis (MFA) Xiong et al. [2014]. Assuming Gaussian distribution

for each class and using the Fisher discriminant objective, kLFDA finds a projection matrix

to maximize the between-class scatters while minimizing the within-class scatters. MFA is

a graph embedding dimensionality reduction method which allows to maximize the marginal

discriminant even when the class distributions are not Gaussian.

We report performances in terms of the Cumulative Match Characteristic (CMC) curves for

different rank values in Tables 5.1 and 5.2. To obtain CMC curves, a hit for rank k is considered

if the correct class is identified among the k-nearest points of a query. From Table 5.1, we

observe that our R-K2ISSME achieves the highest scores for all the studied ranks. On the

CAVIAR dataset, the best reported performance was achieved using the CF-K2ISSME , while

R-K2ISSME works on par with that. It is worth mentioning that both kLFDA and MFA require

the subject identities during training (i.e., they are unrestricted approaches) while our proposals

do not require such additional information.

A parameter to take care of in R-K2ISSME and CF-K2ISSME is the number of eigenvalues

and eigenvectors used to establish W Z (see Eq. (5.11)). A similar parameter in conventional

KISSME and Nyström-KISSME is the dimensionality of PCA (required as a preprocessing

step) and rank of Nyström approximation, respectively. In Fig. 5.3, we analyze the sensitivity

of R-K2ISSME , CF-K2ISSME , Nyström-KISSME and KISSME over the aforementioned

1https://github.com/NEU-Gou/kernel-metric-learning-reid
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Figure 5.3: Rank x scores vs retained variance of the data on the iLIDS dataset Zheng et al. [2009]
where x is 1, 5, 10, 20.

parameters on the iLIDS dataset. Both R-K2ISSME and CF-K2ISSME demonstrate robust and

increasing performances when most of the energy is preserved. In contrast, the performance

of Nyström-KISSME and KISSME may drop if more than 90% of energy is preserved. This is

inline with other studies (such as Xiong et al. [2014]) that show the input dimensionality must

be set carefully to enable KISSME to perform effectively.

As an indicator, on the iLIDS dataset, the deep net proposed in Ding et al. [2015] achieves
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Table 5.2: CMC at rank r on the CAVIAR dataset with p = 36 test individuals.
Method r = 1 r = 5 r = 10 r = 20

kLFDA-χ2 36.2% 64.0% 78.7% 92.2%
MFA-χ2 37.7% 67.2% 82.1% 94.6%
LMNN 33.8% 61.9% 78.6% 92.0%
ITML 29.1% 61.4% 75.8% 92.0%
LDML 30.4% 62.5% 77.8% 91.2%

KISSME 31.4% 61.9% 77.8% 92.5%
Nyström-KISSME 37.5% 67.5% 82.5% 95.0%

CF-K2ISSME 38.7% 68.2% 82.9% 95.4%
R-K2ISSME 38.7% 67.1% 80.9% 95.0%

Figure 5.4: Examples of the KinFace-I and KinFace-II datasets Lu et al. [2014]. From left to right two
examples are shown in each column for kinship relations: F-D, F-S, M-D, and M-S, respectively.

52.1%, 68.2%, 78.0%, and 88.8% at rank 1, 5, 10, and 20, respectively. Interestingly, our

method performs on par or better than the deep solution for rank 5, 10, and 20 while under-

performing at rank 1. This shows a potential research direction by incorporating the proposed

technique in a deep net to benefit from deep architectures.

5.5.5.2 Kinship Verification

We performed another experiment to verify kinship relations from facial images. To this end,

we made use of the KinFace-I dataset Lu et al. [2014] (see Fig. 5.4). The dataset contains

images of four kin types: Father-Son (F-S), Father-Daughter (F-D), Mother-Son (M-S), and

Mother-Daughter (M-D).

The coordinates of eyes in each face image are manually labeled, and facial regions are

cropped and aligned into 64× 64 templates. Then, histogram equalization is applied to miti-

gate the illumination variation. We have used the provided LBP features in our experiments.

More specifically, each face image is divided into blocks of size 16× 16 and for each block

a 256 dimensional LBP histogram is extracted. The extracted histograms are finally concate-

nated to form a 4096 dimensional descriptor.
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Table 5.3: Classification accuracies on various subsets of the KinFace-I dataset.
Method F-D F-S M-D M-S Mean
NRML 65.2% 64.7% 65.4% 59.4% 63.7%
LMNN 63.2% 62.7% 63.4% 57.4% 61.7%
ITML 55.2% 58.3% 56.7% 55.6% 56.5%
LDML 57.1% 60.5% 57.4% 57.4% 58.1%

KISSME 65.4% 72.8% 66.7% 65.5% 67.6%
Nyström-KISSME 69.8% 79.8% 70.1% 68.5% 72.1%

CF-K2ISSME 70.9% 79.8% 69.4% 66.0% 71.5%
R-K2ISSME 71.3% 79.5% 73.7% 69.4% 73.5%

Table 5.4: Classification accuracies on various subsets of the KinFace-II dataset.
Method F-D F-S M-D M-S Mean
NRML 69.5% 69.0% 69.0% 69.8% 69.5%
LMNN 68.5% 68.0% 67.0% 68.8% 68.2%
ITML 63.6% 69.2% 63.4% 64.2% 65.1%
LDML 65.6% 68.0% 66.0% 65.8% 66.4%

KISSME 72.0% 68.6% 68.6% 68.6% 70.4%
Nyström-KISSME 62.6% 64.1% 72.6% 70.2% 67.4%

CF-K2ISSME 73.0% 77.5% 69.2% 70.2% 72.5%
R-K2ISSME 75.6% 78.4% 68.6% 73.2% 74.0%

In Table 5.3, we compare our proposed algorithms against the baselines and the state-of-

the-art NRML Lu et al. [2014] on the KinFace-I dataset Lu et al. [2014]. R-K2ISSME , CF-

K2ISSME and Nyström-KISSME outperform the state-of-the-art NRML by a large margin.

For example, the gap between R-K2ISSME and NRML is near 10%. We also note that R-

K2ISSME , CF-K2ISSME and Nyström-KISSME are superior to the other metric learning

baselines.

In Table 5.4, we provide the results on the KinFace-II dataset Lu et al. [2014]. Here, our

R-K2ISSME again achieves the highest accuracy with CF-K2ISSME being the second best.

Both R-K2ISSME and CF-K2ISSME comfortably outperform the state-of-the-art NRML Lu

et al. [2014] method2.

5.5.5.3 Action Similarity Matching

As our last experiment, we considered the task of action similarity recognition using the

ASLAN dataset Kliper-Gross et al. [2012]. The dataset contains 3,697 unique human action

clips collected from YouTube, spanning 432 categories (see Fig. 5.5 for example frames). The

2We note that a recent study by López et al. discusses the bias in the KinFace dataset. Since our main goal
here is to compare our proposal with other metric learning techniques, the bias does not harm the conclusions made
here.
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Figure 5.5: Examples of the ASLAN dataset Kliper-Gross et al. [2012].

Table 5.5: Matching accuracies on various descriptors of the ASLAN dataset Kliper-Gross et al.
[2012].

Method HoG HoF Hnf
Baseline Kliper-Gross et al. [2012] 54.2% 54.0% 54.5%

LMNN 55.9% 53.5% 56.0%
ITML 55.6% 53.9% 55.9%
LDML 57.3% 56.5% 58.0%

KISSME 55.2% 52.8% 55.7%
Nyström-KISSME 55.6% 53.3% 56.0%

CF-K2ISSME 57.3% 57.8% 57.5%
R-K2ISSME 57.9% 58.3% 58.2%

benchmark protocol is a binary pair matching and the goal is to decide whether two videos

present the same action or not. The sample distribution across the categories in the bench-

mark is quite unbalanced, with 116 categories possessing only one video clip. Furthermore,

categories included in the test sets are not available during training.

An action is represented by spatio-temporal bag-of-words descriptor Laptev et al. [2008]

with a codebook of size 5,000 evaluated individually on three different types of descriptors,

namely Histogram of Oriented Gradients (HoG), Histogram of Optical Flow (HoF) and a com-

bination of both (HnF). We followed the standard matching protocol on this dataset which

makes use of 10 predefined splits of data. There are 12,000 samples including 5,400 training

and 600 testing pairs of action videos in each split.

In Table 5.5, we compare our proposed algorithms against the baselines on the ASLAN

dataset. Here, our R-K2ISSME again achieves the highest accuracies, while the closed-form

solution works on par with it. Compared to the conventional KISSME, the Nyström-KISSME

offers a better recognition rate, demonstrating benefits of analysis in the estimated RKHS in

this method.
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Figure 5.6: Verification accuracy against dimensionality of the space for an experiment using the
surveillance nature images of the CompCars dataset (see §5.6.3.5 for more details).

5.6 Dimensionality Reduction for KISSME

Some recent studies (e.g., Xiong et al. [2014]) show that the KISSME algorithm is successful

only when its input is carefully processed and denoised using PCA. This in turn results in high

degree of sensitivity to the dimensionality of the PCA step as shown in Fig. 5.6. In this section,

we propose to learn a low-dimensional subspace along its metric in the spirit of the KISSME

algorithm in a unified fashion. Furthermore, based on our derivation, we show end-to-end

learning of a generic deep CNN for metric learning.

In short, our contributions here are

1. We propose a Joint Dimensionality Reduction formulation for KISSME algorithm (JDR-

KISSME) that learns a low-dimensional space along its metric in the spirit of the KISSME.

In doing so, we benefit from the optimization techniques on Riemannian manifolds Absil

et al. [2009] and in particular the geometry of Grassmann manifolds.

2. Upon our development, we propose a few simple, yet effective steps, to train a deep

network for metric learning using KISSME verification signal as supervision.

Our experimental validation show that the JDR-KISSME consistently improves the con-

ventional KISSME performance and achieves state-of-the-art results when large scale metric

learning problems are addressed. Furthermore, on challenging datasets, its deep extension

achieves very promising results and comfortably outperforms other state-of-the-art approaches.
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5.6.1 Joint Dimensionality Reduction And Metric Learning

In this part, we present our idea to jointly learn a low-dimensional space and its metric. The

lemma below provides the basis of metric construction using δ(·, ·) (i.e., Eq. (5.2)) as suggested

in Koestinger et al. [2012] and is central to our developments presented in the following.

Lemma 8. Let δ : RD ×RD → R+ be the function defined in Eq. (5.2). The log(δ) approx-

imates a form of Mahalanobis metric, up to a constant term in RD. The approximated Maha-

lanobis metric is recognized as M = Proj(Σ−1
s − Σ−1

d ) with Proj(·) : Sym(D)→ SD
++.

Proof. We note that

log
(
δ(xi, yi)

)
=

1
2

(
log det(Σs)− log det(Σd) (5.20)

+ (xi − yi
)T
(Σ−1

s − Σ−1
d )(xi − yi)

)
.

The first two terms are constant and hence can be removed without loss of generality. From

(xi − yi
)T M(xi − yi), M ∈ SD

++, (i.e., general form of the squared Mahalanobis distance)

and by noting that Σ−1
s − Σ−1

d is not necessarily an SPD matrix, we conclude that an approxi-

mated Mahalanobis metric associated to log(δ) has the form M = Proj(Σ−1
s − Σ−1

d ).

As discussed earlier, the metric M, while scaling well to the number of (dis)similar pairs,

is sensitive to the dimensionality of the space (see for example Xiong et al. [2014]). In prac-

tice, finding the optimal dimension (or equivalently the most discriminative subspace) is done

through PCA. Obviously, finding the subspace along its metric is more appealing and promises

better discriminatory power. As such, our goal is to find a lower dimensional space and its Ma-

halanobis metric by making use of lemma 8. Formally, we seek a linear mapping h : RD → Rd

and an SPD matrix M such that

d2
M
(
h(xi), h(yi)

)
=
(
h(xi)− h(yi)

)TM
(
h(xi)− h(yi)

)
(5.21)

reflects the dissimilarity function in Eq. (5.2) better. In doing so, we base our derivations

on Koestinger et al. [2012] and rewrite Eq. (5.20) using h(x) = W Tx, W ∈ RD×d as

log
(
δ(h(xi), h(yi))

)
=

1
2

(
log det(W TΣsW) (5.22)

− log det(W TΣdW) + (xi − yi)
TW MW T(xi − yi)

)
.
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This enables us to define the loss over all training pairs as

E
(
W , M) ,

n

∑
i=1

li log
(
δ(h(xi), h(yi))

)
. (5.23)

Minimizing Eq. (5.23) indeed makes the distances between similar pairs smaller while simul-

taneously increases the distances between dissimilar pairs. For reasons become clear soon, we

opt for an alternating optimization scheme to obtain W and M. That is, we keep W fixed

to update M, followed by updating W by keeping M fixed. By fixing W , we make use of

lemma 8 to obtain a closed form update for M. We note that the covariance matrix Σ in the

space defined by W has the form of W TΣW . Using lemma 8, this in turn leads to the following

metric in the latent space

M∗ = Proj
((

W TΣsW
)−1 −

(
W TΣdW

)−1
)

. (5.24)

To update W while M is fixed, we add an orthogonality constraint to W . The orthogonality

constraint helps to avoid degeneracy in the solution and is inline with the general practice in

dimensionality reduction Weinberger and Saul [2009]. As such, we can write the following

constrained optimization problem

minW E
(
W , M∗

)
s.t. W TW = Id

(5.25)

To minimize (5.25), we make use of the recent advances in optimization over the matrix

manifolds Absil et al. [2009]. In particular, the constrained optimization problem in (5.25) can

be understood as a minimization problem on space of tall matrices with orthogonal columns

which we solve using Riemannian Conjugate Gradient Descent (RCGD) on Grassmannian.

The geometrically correct setting to minimize a problem with the orthogonality constraint

is by making use of the geometry of the Stiefel manifold SD
d = {W ∈ RD×d, W TW = Id}.

The Grassmannian manifold GD
d consists of the set of all linear d-dimensional subspaces of RD

and is the quotient of SD
d with the equivalence class being (see Absil et al. [2009]; Edelman

et al. [1998] for details)

[W ] , {W R, W ∈ SD
d , R ∈ O(d)} ,

with O(d) denoting the orthogonal group, i.e., RTR = RRT = Id.

A constrained optimization problem with the orthogonality constraint is a problem on
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Grassmannian if its objective is invariant to the right action of O(d). This is indeed the case

as a result of the following theorem.

Theorem 9. The objective defined in Eq. (5.23) is invariant to the right action of O(d), i.e.,

E
(
W , M∗

)
= E

(
W R, M∗

)
, R ∈ O(d).

Proof. First, we show that the log det(·) terms in Eq. (5.22) are invariant to the action of

O(d). Consider the first term for example. Direct insertion results in

det(RTW TΣsW R) = det(RT)det(W TΣsW)det(R)

= det(W TΣsW),

where we used the fact that det(RT) = det(R−1) = 1/ det(R).
Now we show that the term with the metric is invariant to the action of O(d) as well. Let

A+ = Proj(A), ∀A ∈ Sym(d). Using SVD, it is easy to see that RT A+R = Proj(RT AR), ∀R ∈
O(d). This in turn leads to recognizing Eq. (5.24) by replacing W with W R as

Proj
((

RTW TΣsW R
)−1 −

(
RTW TΣdW R

)−1
)

= Proj
(

R−1(W TΣsW
)−1R−T − R−1(W TΣdW

)−1R−T
)

= Proj
(

RT
((

W TΣsW
)−1 −

(
W TΣdW

)−1
)

R
)

= RTProj
((

W TΣsW
)−1 −

(
W TΣdW

)−1
)

R .

where we used the fact that RT = R−1.
As such and again by replacing W with W R for the term with M∗ involved (the third term

in Eq. (5.22)), we arrive at

(xi − yi)
TW RM∗RTW T(xi − yi) = (xi − yi)

TW RRT×

Proj
((

W TΣsW
)−1−

(
W TΣdW

)−1
)

RRTW T(xi − yi)

= (xi−yi)
TWProj

((
W TΣsW

)−1−
(
W TΣdW

)−1
)

W T(xi−yi).

This concludes the proof as it shows all the terms are invariant to the right action ofO(d).

To perform RCGD on GD
d , we need to compute the Riemannian gradient of the loss

E(W , M) with respect to W . For a smooth function f : GD
d → R , the Riemannian gra-

dient at W denoted by gradW f is an element of the tangent space TWG and is given by

gradW f =
(

Id −WW T
)
∇W f , (5.26)
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Algorithm 4 The proposed JDR-KISSME algorithm
Input:

{
xi, yi, li

}n
i=1 a set of training pairs in RD with their similarity labels, the target dimensionality d

Output: Projection W and metric M
1: Compute Σd and Σs using Eq. (5.3) and Eq. (5.4)
2: Initialize W to an orthonormal matrix (e.g., truncated identity)
3: Compute M∗ using Eq. (5.24)
4: repeat
5: W∗ = arg minW E

(
W , M∗

)
using RCGD on Grassmannian

6: W ←W∗

7: Update M∗ using Eq. (5.24)
8: M ← M∗

9: until convergence

where ∇W f is a D× d matrix of partial derivatives of f with respect to the elements of W ,

i.e., [∇W f ]i,j =
∂ f

∂Wi,j
. Below, we derive ∇WE(W , M). For a symmetric matrix Σ

∇W log det(W TΣW) = 2ΣW
(
W TΣW

)−1 .

Also,

∇W (xi − yi
)TW MW T(xi − yi) = (5.27)

2(xi − yi
)
(xi − yi

)TW M.

Therefore,

∇WE
(
W , M

)
=

N

∑
i=1

li
(

ΣsW
(
W TΣsW

)−1 (5.28)

− ΣdW
(
W TΣdW

)−1
+ (xi − yi

)
(xi − yi

)TW M
)

.

An alternating optimization solution not only lets us obtain M in closed form according to

Eq. (5.24), but also justifies the use of Grassmannian, making the search space more confined.

Putting everything together, the algorithm to learn W and M is depicted in Alg. 4. In our

experiments, we observed that the algorithm typically converges in less than 30 iterations.

5.6.2 Incorporating the Solution into Deep Nets

In this part, we elaborate on how the previous developments can be incorporated into deep

networks. The goal is to learn a mapping from images to a compact Euclidean space such

that distances correspond to a notion of semantics between the images. Let us assume that a

generic network provides us with an embedding from the image space to Rd. We denote the
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Figure 5.7: Incorporating JDR-KISSME into deep nets. The dimensionality reduction can be seen as
an FC layer immediately before a loss layer. One can either have the metric M in computing the loss
(top panel) or since M = LLT , combine it with the dimensionality reduction layer (bottom panel).
Empirically, we found the first solution to be more stable.

functionality of this network on an input image x by f (x).

Since a metric M is an SPD matrix, it can be decomposed as M = LT L. As a result, the

distance between two images xi and yi passing through the network can be written as

d2
M
(
xi, yi

)
=
(

f (xi)− f (yi)
)T M

(
f (xi)− f (yi)

)
= ‖L

(
f (xi)− f (yi)

)
‖2

2 . (5.29)

This lets us incorporate the metric M into a deep net in the form of a Fully Connected

(FC) layer immediately before a loss layer. The whole setup can be trained via BackPropaga-

tion (BP). Generally speaking, training a deep CNN for metric learning is cast as one of the

following forms (see Song et al. [2016] and Schroff et al. [2015] for more details).

• Pairwise: training data consists of pairs of similar and dissimilar images. Given a prede-

fined margin τ, training is guided by a loss function which seeks to learn an embedding

such that distances between similar samples are smaller than τ while those between dis-

similar ones are greater than τ. In this manner, the cost function for a batch with n pairs

{xi, yi} and their corresponding similarity label li ∈ {1,−1} can be written as

n

∑
i=1

[(
‖ f (xi)− f (yi)

∥∥2
2 − τ

)
li
]
+

(5.30)

• Triplewise: training data consists of triplets of images: one anchor x, a sample in the

same class x+, and one differently labelled sample x−, and a predefined margin τ. Then,

a loss function supervises training such that for each triplet, the distance between x and
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x− becomes greater than the distance between x and x+ plus τ. Thus, the cost function

for a batch with N triplets is

n

∑
i=1

[∥∥ f (xi)− f (x+i )
∥∥2

2 −
∥∥ f (xi)− f (x−i )

∥∥2
2 + τ

]
+

(5.31)

An important difference between the two categories is that only methods in the first group

can work in the restricted metric learning scenario. We present our extension to deep networks

utilizing the pairwise protocol, making our method applicable to wider set of problems. To

this end, we start with an initial orthonormal W and compute M using Eq. (5.24), relying on

the network to provide features in the low-dimensional space. To tune W and M via BP, two

possibilities are

• Initialize the weights of the last FC layer to be W and engage the metric M directly in

computing the distances in the loss layer. To this end, we perform Stochastic Gradient

Descent (SGD) while M is kept fixed. We update M after a number of SGD iterations or

when the network reaches to a reasonably good representation. In this case, BP updates

the network according to the KISSME loss (i.e., Eq. (5.23)) while M is learned in a

closed form manner using the output of the network and Eq. (5.24) (see the top panel in

Fig. 5.7). We refer to this solution as “pairwise+KISSME”.

• Since M is an SPD matrix (i.e., M = LT L), it can be absorbed in the last FC layer.

Here, we initialize the weights of the last FC layer to be W L. Then, we train the network

using BP. If the explicit form of the metric is required, the weights of the FC layer can

be factorized into an orthogonal matrix W and a full-rank matrix L using any spectral

decomposition such as QR decomposition (see the bottom panel in Fig. 5.7). We refer

to this solution as “pairwise+KISSME-Compact”.

Empirically, we observed that pairwise+KISSME solution is more stable and works better. We

conjecture that the separation of learning W and M is the reason here. In § 5.6.3.4, we compare

the two scenarios in more details. Before concluding this part, we would like to mention that

placing a Local Response Normalization (LRN) block (see Fig. 5.7) before the dimensionality

reduction block helps the convergence in our solution. This is inline with other deep metric

learning models Liu et al. [2016]; Schroff et al. [2015].
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5.6.3 Experiments

In this section, we assess and contrast the performance of our proposal against the KISSME

baseline and several state-of-the-art methods. We begin by evaluating JDR-KISSME using the

Comprehensive Cars (CompCars) Yang et al. [2015] and Market-1501 Zheng et al. [2015a]

datasets. We then demonstrate the strength of the solution when incorporated into deep net-

works using the CUB200-2011 Wah et al. [2011] and Cifar100 Krizhevsky [2009] datasets.

5.6.3.1 Car Verification (Shallow Experiment)

The CompCars dataset is one of the largest benchmarks for image verification containing

214,345 images of 1,687 car models from two significantly different scenarios: web nature

and surveillance nature. Web nature data is split into three subsets without overlap. Related to

verification is part II and part III of the dataset. Part II contains 4,454 images in 111 models

(classes) while there are 22,236 images spanning 1,145 models in part III. We followed Yang

et al. [2015], the standard verification protocol on this dataset, which splits part III to three

sets with different levels of difficulty, namely easy, medium, and hard. Each set contains

20,000 pairs including equal number of similar and dissimilar pairs. Each image in the easy

pairs is chosen from the same viewpoint, while each pair in the medium pairs is selected from

a random viewpoint. Each dissimilar pair in the hard subset is selected from the same car

make. As for feature extraction, again following Yang et al. [2015], we utilized their available

GoogLeNet Szegedy et al. [2015] fine tuned on part II of the CompCars.

In Table 5.6, we compare our JDR-KISSME method against the conventional KISSME

algorithm and several state-of-the-art methods. First, we note that the JDR-KISSME shows

consistent improvements over the KISSME. For example, the accuracy gap between the JDR-

KISSME and the KISSME over the hard subset reaches 4.4%. The JDR-KISSME achieves

the state-of-the-art verification accuracies on all the protocols. Moreover, we note that the

work of Yang et al. [2015] (the closest competitor to our JDR-KISSME) utilizes class labels

for training (and hence not applicable to the restricted metric learning scenarios) while our

method is more general and does not rely on the availability of such information.

5.6.3.2 Person Re-Identification (Shallow Experiment)

Person re-identification is the practice of matching a probe image of an individual in a database

of (gallery) images from non-overlapping views. The Market-1501 dataset is one of the largest

datasets for this task containing over 32,000 bounding boxes of 1,501 identities captured by at
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Table 5.6: Verification accuracy on the CompCars dataset.
Method Easy Medium Hard Mode

PCCA Mignon and Jurie [2012] 86.7% 81.4% 72.6% Restricted
XQDA Liao et al. [2015] 87.8% 82.6% 74.4% Unrestricted

MixedDiff+CCL Liu et al. [2016] 83.3% 78.8% 70.3% Unrestricted
BoxCars Sochor et al. [2016] 85.0% 82.7% 76.8% Unrestricted
Yang et al. Yang et al. [2015] 90.7% 85.2% 78.8% Unrestricted

KISSME Koestinger et al. [2012] 88.9% 83.3% 75.4% Restricted
JDR-KISSME(ours) 91.0% 86.3% 79.8% Restricted

Table 5.7: CMC at rank-1 and mAP on the Market-1501 dataset.
Method Rank@1 mAP Mode

PCCA Mignon and Jurie [2012] 76.0% 52.8% Restricted
XQDA Liao et al. [2015] 76.0% 53.0% Unrestricted

KISSME Koestinger et al. [2012] 77.5% 53.9% Restricted
JDR-KISSME(ours) 79.2% 54.6% Restricted

least two (and at most six) cameras. The dataset is further enlarged using a distractor set of

over 500,000 irrelevant (not belonging to the identities) images.

We adopted the experimental setting in Zheng et al. [2015a, 2016] which utilize the ResNet-

50 He et al. [2016] to generate id-discriminative embedding for Market-1501 dataset. Here, the

original dimensionality is 2048 and the target dimensionality is set to 200. Using the gallery

size of 19,732 images and single-query evaluation, the mean average precision score (mAP)

and the Cumulative Matching Curve (CMC) at rank-1 of our JDR-KISSME and baseline meth-

ods are reported in Table 5.7. Here, again our proposal comfortably outperforms the baseline

methods.

5.6.3.3 Deep Experiments

In this part, we show the effectiveness of pairwise+KISSME, our deep metric learning method.

To this end, we perform comparisons with the two most common ways of training a CNN for

metric learning, i.e., pairwise metric learning (Eq. (5.30)) and triplet solution (Eq. (5.31)). We

note that the triplet solution utilizes class labels while our method like the pairwise is more

general and does not require the labels. We recall from § 5.6.2 that the training starts by

initializing two matrices, W (or equivalently the last FC layer) and M. To initialize W , we

rely on the initial CNN to provide embeddings of training images up to the last FC layer. Then,

the FC layer is initialized with PCA (of a certain dimensionality). This is consistent with the

original KISSME algorithm. Next, the metric M is initialized using the output of the FC layer
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(and Eq. (5.24)). This is required in the loss layer to perform BP.

To measure the performances, we randomly generate 30,000 similar and 30,000 dissimilar

pairs from our test data. We report verification accuracy, Area Under the ROC Curve (AUC),

and Equal Error Rate (EER) values for our algorithm and of the baselines for comparisons.

We use Matconvnet package Vedaldi and Lenc [2015] for implementation. Before delving into

experiments, we note that our aim here is to present a better, yet general way of metric learning

for deep networks. In doing so, we are not chiefly concerned about best mining practices as

suggested in Song et al. [2016]; Schroff et al. [2015].

Bird Verification

As our first experiment for deep metric learning, we considered the task of image verification

using CUB200-2011 dataset Wah et al. [2011]. The CUB200-2011 has 200 classes of birds

with 11,788 images. We used images of the first 100 classes as training and validation sets

and the remaining classes for testing. As the CNN, we utilized the VGG-CNN-M-1024 Chat-

field et al. [2014] pretrained on the ImageNet Deng et al. [2009]. The network contains 5

convolutional layers followed by 3 FC layers with 87 millions learnable parameters in total.

Fig. 5.9 summarizes the three score metrics of our deep metric learning technique and of

our two baselines for various embedding sizes (or equivalently subspace dimensionality). Sim-

ilar to the previous experiment, our solution is consistently superior to the baseline techniques

for all embedding sizes. For example, the difference in the verification accuracy between our

method and its closest competitor, i.e., the triplet solution, is about 2% for the size 128 over

the 60,000 test pairs.

Fig. 5.8 shows the Barnes-Hut t-SNE Van Der Maaten [2014] visualization on our 128

dimensional embedding of the test split of the CUB-200-2011 dataset. Although a 2D mapping

does not directly translate to the original high dimensional embedding, we can observe that

similar species are projected together.

Tiny Image Verification

As another expperiment for deep metric learning, we studied the task of image verification

using the Cifar100 dataset Krizhevsky [2009] which has 60,000 images of size 32× 32. To

this end, we trained the LeNet-5 LeCun et al. [1998] network (which has 2 convolutional lay-

ers followed by 2 FC layers) on the Cifar10 dataset Krizhevsky [2009] for 22,500 iterations

of SGD. We then cropped the pretrained network at the fourth layer and fine tuned it on the

Cifar100 similar to the previous experiment. We kept the embedding size to 32 for this experi-

ment (i.e., W was 64× 32 and M was 32× 32). All other experimental details (e.g., train/test

split, number of test pairs, etc) were the same as the bird verification experiment.
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Figure 5.8: Barnes-Hut t-SNE visualization of our embedding on a subset of the test set of the CUB-
200-2011. Best viewed when zoomed in.

Table 5.8: Accuracy, AUC, and EER on the Cifar100 dataset.
Method Accuracy AUC EER

KISSME Koestinger et al. [2012] 63.1% 69.2% 36.4%
Pairwise 64.3% 70.0% 35.4%

Triplewise 65.8% 72.0% 34.2%
Pairwise+KISSME(ours) 68.2% 75.2% 31.7%

In Table 5.8, we compare our method against the so called pairwise and triplet methods as

well as the original KISSME on the pretrained network (i.e., without fine tuning). Here again,

our solution comfortably outperforms the other methods for all the studied metrics over the

60,000 test pairs.

5.6.3.4 Further Analysis

In this part, we empirically compare the pairwise+KISSME method to the pairwise+KISSME-

Compact solution discussed in § 5.6.2. To this end, we conducted further experiments on the

CUB200-2011 (bird verification) dataset. The accuracy, AUC and EER values for various
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Figure 5.9: Verification accuracy, AUC, and EER score metrics on the CUB200-2011 dataset.
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Figure 5.10: Comparison between the pairwise+KISSME and pairwise+KISSME-Compact deep solu-
tions on the CUB200-2011 dataset.

Table 5.9: Accuracy, AUC, and EER when M is not incorporated into the networks.
Dataset Accuracy AUC EER

CUB200-2011 84.2% 91.5% 16.6%
Cifar100 65.3% 71.7% 34.6%

embedding sizes are depicted for the two solutions in Fig. 5.10. From the Figure, we conclude

that the pairwise+KISSME solution leads to superior performances and is more stable, hence

our proposal. This is a consistent extension to the JDR-KISSME, our developments in the

shallow mode, where we have an alternating algorithm to find the two matrices W and M.

We conjecture that the separation of learning W and M is the reason. More specifically, as-

sume the ideal projection is W∗. From Lemma 8, we conclude that the ideal metric is obtained

as M∗ = Γ(W) where the function Γ(·) is a nonlinear function as a result of the projection to

the positive definite cone. The pairwise+KISSME is more aligned with Lemma 8 as the metric

is explicitly obtained from the representation. On the other hand, the pairwise+KISSME-

Compact removes the dependency of M∗ on W∗ in the hope of learning M∗, W∗ and the

underlying nonlinear projection together.

Furthermore, we studied the effect of keeping the metric M fixed while the network is

trained. To this end, similar to the pairwise+KISSME, we fix M using the network outputs and

tune the filters and FC layers according to the KISSME loss (i.e., Eq. (5.23)). Table 5.9 shows

the performance measures for the CUB200-2011 (with M ∈ S128
++) and Cifar100 datasets.
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Comparing to the pairwise+KISSME, the performance gaps are about 1.7% and 2.9%, respec-

tively, demonstrating that joint learning yields higher accuracies.

5.6.3.5 Experimental setup

For fine tuning the CNNs, we randomly generated 300,000 similar pairs and 300,000 dissimilar

pairs (and equal number of triplets) and fed them to the CNNs. We exhaustively searched for

all possible similar pairs within a batch and randomly sampled equal number of dissimilar

pairs. For all experiments, we set maximum number of SGD iterations to 20,000, margin to

τ = 1.0, momentum to µ = 0.9, and learning rate to η = [10−4, 10−7] in log-space range. We

observed that increasing the learning rate of the fully connected layer by a factor of 10 helps

faster convergence. A similar observation is reported in Song et al. [2016]. To augment the

data, we resorted to only flipping the images at random.

To have a complete picture, we report the computational burden of our methods here. Per-

forming 30 iterations by the JDR-KISSME for the task of car verification takes about 90 sec-

onds on a quad-core machine using Matlab. As for the pairwise+KISSME and two baselines,

namely the pairwise and triplewise metric learning using the CUB200-2011 dataset (§ 5.6.3.3),

in average for an embedding size of 128, performing 10,000 iterations of SGD takes 41,050

and 40,803 seconds for the pairwise+KISSME and pairwise, respectively, using a moderate

NVIDIA Quadro M4000 GPU. The slight difference is because computing the metric M is the

only extra step required for training in the pairwise+KISSME. For the case of triplewise this

time is 42,345 seconds.

To do complete justice, we also provide details of the experiment used to generate Fig. 5.6.

We used the surveillance images of the CompCars dataset. There exist 44,481 images in 281

classes (car models). We randomly split the dataset into 140 classes for training and used the

remaining 141 classes for testing. This was to ensure that there is no overlap between the

training and testing images. We generated 200,000 training pairs and 60,000 testing pairs,

randomly from the training and testing sets. To extract image descriptors, we computed SIFT

features on a dense grid and then computed Bag Of Word representations using a dictionary

of size 4096, trained by the k-means algorithm. As shown in the figure, our JDR-KISSME is

superior to the base line KISSME for all embedding sizes.
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5.7 Conclusions

In this chapter, we first kernelized the recently introduced KISSME algorithm. This not only

enables us to deal with non-linearity in data but also provides a principal way to employ

KISSME on non-vectorized data (e.g., manifold-value data). Along the way, we developed

a method to project a matrix into the positive cone in an RKHS. We also developed an approx-

imated solution based on the Nyström method towards kernelizing KISSME. Our experiments

demonstrate consistent improvements of the kernelized solutions over the original KISSME

and other baselines.

Furthermore, we introduced a joint dimensionality reduction technique for the KISSME

algorithm, namely JDR-KISSME. Our motivation stems from the fact that the KISSME fails

badly when its input is not meticulously denoised using PCA. Along the way, we formulated

the solution as a Riemannian optimization problem. Based on our proposal, we also showed an

end-to-end learning of a generic deep network for metric learning. Our experiments demon-

strate consistent improvements of the JDR-KISSME and its deep extension over the original

KISSME and state-of-the-art methods.



Chapter 6

Conclusions

In this thesis, inspired by the recent success of compact representations of data which are

sources of geometric information, we first proposed a list of Riemannian coding techniques in-

cluding Riemannian Vector of Locally Aggregated Descriptors (R-VLAD) Jégou et al. [2012]

and Riemannian Sparse Coding (R-SC) Wright et al. [2009] for image and video classification

tasks. In particular, we studied structured local descriptors from visual data, namely Region

Covariance Descriptors (RCovD) Tuzel et al. [2008] and linear subspaces that reside on the

manifold of Symmetric Positive Definite (SPD) matrices and the Grassmannian manifolds, re-

spectively. In our frame-work, we not only provided a comprehensive formulation but also

incorporated various well-known metrics defined on the two manifolds into our models.

We then expanded our investigations on structured descriptors by considering infinite-

dimensional RCovDs Harandi et al. [2014a]; Quang et al. [2014] and Symmetric Positive

Semi-Definite (SPSD) matrices, two special types of covariance based descriptors for visual

data. More specifically, we made use of random Fourier feature Rahimi and Recht [2007]

and the Nyström method Baker [1977] to compute to approximate the infinite-dimensional

RCovDs. Using our derivation, one can seamlessly exploit the rich geometry of RCovDs and

tools developed upon that such as tangent spaces to do the inference. As for the SPSD matri-

ces, we considered their role as image set descriptors. We devised similarity measures that can

be decomposed as sum of infinitesimal distances on the Grassmannian manifold and the man-

ifold of SPD matrices. We supported our technical contributions with successful experiments

on a rigorous list of challenging applications including gesture classification, video-based face

recognition and dynamic scene recognition.

Lastly, we provided a principal way to employ the Keep It Simple and Straightforward

MEtric learning (KISSME) Koestinger et al. [2012] algorithm on non-vectorized data. To

this end, we made use of the aforementioned infinite-dimensional RCovDs and Riemannian

optimization technique to obtain an exact solution along with approximated variants of our

93
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proposal. Also, we addressed the sensitivity problem of the KISSME algorithm to the input

dimensionality by introducing a joint dimensionality reduction technique for the algorithm.

Along the way, we formulated the solution as a Riemannian optimization problem. This is fol-

lowed by end-to-end learning of a generic deep network for metric learning using our deriva-

tion.

6.1 Future Work

Since our formulation for Riemannian coding allows us to utilize any metric to construct the

codes, in the future, we are interested to extend our framework to other types of Riemannian

structures such as Kendall shape manifolds. Furthermore, we intend to explore how the infinite-

dimensional descriptors can be extended to other types of Riemannian manifolds, such as

Grassmannian manifolds.

Given the importance of metric learning in real-world scenarios, we plan to devise other

variants of training a deep network using the KISSME verification signal such as triplewise+

KISSME. To further improve the accuracy of our proposed method, we also plan to benefit

from more advanced mining techniques such as multi-class N-pair loss Sohn [2016].
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